Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T19:07:07.917Z Has data issue: false hasContentIssue false

Effects of different fat sources, technological forms and characteristics of the basal diet on milk fatty acid profile in lactating dairy cows – a meta-analysis

Published online by Cambridge University Press:  02 March 2012

A. STERK*
Affiliation:
Animal Nutrition Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands Agrifirm Innovation Center, Boogschutterstraat 1A, 7302 HA Apeldoorn, The Netherlands
A. M. VAN VUUREN
Affiliation:
Animal Nutrition Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands Wageningen UR Livestock Research, Edelhertweg 15, 8219 PH Lelystad, The Netherlands
W. H. HENDRIKS
Affiliation:
Animal Nutrition Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
J. DIJKSTRA
Affiliation:
Animal Nutrition Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

A meta-analysis was conducted to study milk fatty acid (FA) profile in dairy cows in response to changes in dietary nutrient composition in relation to supplementation of fat sources, their technological form, addition of fish oil and main forage type in the basal diet. Data comprised 151 treatment means from 50 experiments, which were included in the database when diet composition, nutrient composition, FA composition, dry matter (DM) intake, milk yield, milk composition and milk FA profile were reported. Mixed model regression analysis including a random experiment effect and unequal variances among experiments was used. Least squares means were obtained for the different fat sources (unsupplemented, rapeseed, soybean+sunflower, linseed, or fish oil), technological form including addition of fish oil (oil, seed, protected and added fish oil), and main forage type (lucerne silage, barley silage, maize silage, grass silage, maize silage combined with haylage, or haylage) in the basal diet. Results showed that the technological form of supplemental rapeseed, soybean, sunflower, or linseed significantly influenced the effect of dietary nutrient composition on milk fat content and milk FA profile resulting in significant differences between technological forms within the different fat sources. Protected rapeseed and linseed increased C18:2n6 and C18:3n3 proportions in milk fat, respectively, whereas soybean and sunflower seed increased transfer efficiencies for C18:2n6 and C18:3n3 and their proportions in milk fat. Soybean, sunflower, or linseed supplied as oil increased trans-11-C18:1 proportions in milk fat, whereas the addition of fish oil to a diet containing soybean or sunflower decreased C18:0 and cis-9-C18:1 proportions in milk fat. The main forage type in the diet also significantly influenced the effect of dietary nutrient composition on milk fat content and milk FA profile, resulting in significant differences between main forage types in the diet within the different fat sources. Maize silage as the main forage type increased trans-11-C18:1 in unsupplemented diets or diets supplemented with a source of soybean or sunflower. For rapeseed supplemented diets, barley silage increased transfer efficiency and milk fat proportion of C18:2n6, whereas grass silage increased proportion of C18:3n3 in milk fat. For soybean or sunflower supplemented diets, haylage increased proportions of saturated FA, cis-9-C18:1 and C18:2n6, whereas the combination of maize silage and haylage increased transfer efficiency and milk fat proportion of C18:3n3. For linseed supplemented diets, grass silage as the main forage type resulted in the highest C18:3n3 proportion, whereas cis-9-C18:1 proportion was comparable for grass silage, lucerne silage and maize silage as the main forage type. This meta-analysis confirmed that the effect of dietary nutrient composition on several milk FA proportions depends on the type and form of fat supplementation, addition of fish oil, and main forage type in the basal diet.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AbuGhazaleh, A. A. & Jenkins, T. C. (2004). Disappearance of docosahexaenoic and eicosapentaenoic acids from cultures of mixed ruminal microorganisms. Journal of Dairy Science 87, 645651.CrossRefGoogle ScholarPubMed
AbuGhazaleh, A. A., Schingoethe, D. J., Hippen, A. R. & Kalscheur, K. F. (2003). Conjugated linoleic acid and vaccenic acid in rumen, plasma, and milk of cows fed fish oil and fats differing in saturation of 18 carbon fatty acids. Journal of Dairy Science 86, 36483660.CrossRefGoogle ScholarPubMed
AbuGhazaleh, A. A., Schingoethe, D. J., Hippen, A. R., Kalscheur, K. F. & Whitlock, L. A. (2002). Fatty acid profiles of milk and rumen digesta from cows fed fish oil, extruded soybeans or their blend. Journal of Dairy Science 85, 22662276.CrossRefGoogle ScholarPubMed
Bibby, J. & Toutenburg, H. (1977). Prediction and Improved Estimation in Linear Models. London: John Wiley and Sons.Google Scholar
Boeckaert, C., Vlaeminck, B., Dijkstra, J., Issa-Zacharia, A., Van Nespen, T., Van Straalen, W. & Fievez, V. (2008 b). Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. Journal of Dairy Science 91, 47144727.CrossRefGoogle ScholarPubMed
Boeckaert, C., Vlaeminck, B., Fievez, V., Maignien, L., Dijkstra, J. & Boon, N. (2008 a). Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Applied and Environmental Microbiology 74, 69236930.CrossRefGoogle ScholarPubMed
Boeckaert, C., Vlaeminck, B., Mestdagh, J. & Fievez, V. (2007). In vitro examination of DHA-edible micro algae 1. Effect on rumen lipolysis and biohydrogenation of linoleic and linolenic acids. Animal Feed Science and Technology 136, 6379.CrossRefGoogle Scholar
Boufaïed, H., Chouinard, P. Y., Tremblay, G. F., Petit, H. V., Michaud, R. & Bélanger, G. (2003). Fatty acids in forages. II. In vitro ruminal biohydrogenation of linolenic and linoleic acids from Timothy. Canadian Journal of Animal Science 83, 513522.CrossRefGoogle Scholar
Chilliard, Y. & Ferlay, A. (2004). Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reproduction Nutrition Development 44, 467492.CrossRefGoogle ScholarPubMed
Chilliard, Y., Glasser, F., Ferlay, A., Bernard, L., Rouel, J. & Doreau, M. (2007). Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. European Journal of Lipid Science and Technology 109, 828855.CrossRefGoogle Scholar
Dewhurst, R. J., Shingfield, K. J., Lee, M. R. F. & Scollan, N. D. (2006). Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology 131, 168206.CrossRefGoogle Scholar
Fievez, V., Vlaeminck, B., Jenkins, T., Enjalbert, F. & Doreau, M. (2007). Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ. European Journal of Lipid Science and Technology 109, 740756.CrossRefGoogle Scholar
Firkins, J. L., Eastridge, M. L., St-Pierre, N. R. & Noftsger, S. M. (2001). Effects of grain variability and processing on starch utilization by lactating dairy cattle. Journal of Animal Science 79(E-Suppl.), E218E238.CrossRefGoogle Scholar
Franklin, S. T., Martin, K. R., Baer, R. J., Schingoethe, D. J. & Hippen, A. R. (1999). Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. Journal of Nutrition 129, 20482052.CrossRefGoogle ScholarPubMed
Glasser, F., Ferlay, A. & Chilliard, Y. (2008). Oilseed lipid supplements and fatty acid composition of cow milk: a meta-analysis. Journal of Dairy Science 91, 46874703.CrossRefGoogle ScholarPubMed
Harfoot, C. G. & Hazlewood, G. P. (1997). Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem, 2nd edn (Eds Hobson, P. N. & Stewart, C. S.), pp. 382426. London: Chapman & Hall.CrossRefGoogle Scholar
Heck, J. M. L., Van Valenberg, H. J. F., Dijkstra, J. & Van Hooijdonk, A. C. M. (2009). Seasonal variation in the Dutch bovine raw milk composition. Journal of Dairy Science 92, 47454755.CrossRefGoogle ScholarPubMed
Jacobs, A. A. A., Van Baal, J., Smits, M. A., Taweel, H. Z. H., Hendriks, W. H., Van Vuuren, A. M. & Dijkstra, J. (2011). Effects of feeding rapeseed oil, soybean oil, or linseed oil on stearoyl-CoA desaturase expression in the mammary gland of dairy cows. Journal of Dairy Science 94, 874887.CrossRefGoogle ScholarPubMed
Jenkins, T. C. & Bridges, W. C. Jr. (2007). Protection of fatty acids against ruminal biohydrogenation in cattle. European Journal of Lipid Science and Technology 109, 778789.CrossRefGoogle Scholar
Jones, R. A., Mustafa, A. F., Christensen, D. A. & Mckinnon, J. J. (2001). Effects of untreated and heat-treated canola presscake on milk yield and composition of dairy cows. Animal Feed Science and Technology 89, 97111.CrossRefGoogle Scholar
Kliem, K. E., Morgan, R., Humphries, D. J., Shingfield, K. J. & Givens, D. I. (2008). Effect of replacing grass silage with maize silage in the diet on bovine milk fatty acid composition. Animal 2, 18501858.CrossRefGoogle ScholarPubMed
Lin, L. I. -K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 225268.CrossRefGoogle ScholarPubMed
Lock, A. L. & Bauman, D. E. (2004). Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 39, 11971206.CrossRefGoogle ScholarPubMed
Loor, J. J., Ferlay, A., Ollier, A., Ueda, K., Doreau, M. & Chilliard, Y. (2005). High-concentrate diets and polyunsaturated oils alter trans and conjugated isomers in bovine rumen, blood and milk. Journal of Dairy Science 88, 39863999.CrossRefGoogle ScholarPubMed
Loor, J. J., Herbein, J. H. & Jenkins, T. C. (2002). Nutrient digestion, biohydrogenation, and fatty acid profiles in blood plasma and milk fat from lactating Holstein cows fed canola oil or canolamide. Animal Feed Science and Technology 97, 6582.CrossRefGoogle Scholar
Lundy, , Iii, F. P., Block, E., Bridges, W. C. Jr., Bertrand, J. A. & Jenkins, T. C. (2004). Ruminal biohydrogenation in Holstein cows fed soybean fatty acids as amides or calcium salts. Journal of Dairy Science 87, 10381046.CrossRefGoogle ScholarPubMed
Palmquist, D. L., Lock, A. L., Shingfield, K. J. & Bauman, D. E. (2005). Biosynthesis of conjugated linoleic acid in ruminants and humans. Advances in Food Nutrition Research 50, 179217.CrossRefGoogle ScholarPubMed
Petit, H. V. (2003). Digestion, milk production, milk composition, and blood composition of dairy cows fed formaldehyde treated flaxseed or sunflower seed. Journal of Dairy Science 86, 26372646.CrossRefGoogle ScholarPubMed
Petit, H. V., Dewhurst, R. J., Scollan, N. D., Proulx, J. G., Khalid, M., Haresign, W., Twagiramungu, H. & Mann, G. E. (2002). Milk production and composition, ovarian function, and prostaglandin secretion of dairy cows fed omega-3 fats. Journal of Dairy Science 85, 889899.CrossRefGoogle ScholarPubMed
Petit, H. V., Germiquet, C. & Lebel, D. (2004). Effect of feeding whole, unprocessed sunflower seeds and flaxseed on milk production, milk composition, and prostaglandin secretion in dairy cows. Journal of Dairy Science 87, 38893898.CrossRefGoogle ScholarPubMed
Shingfield, K. J., Ahvenjärvi, S., Toivonen, V., Ärölä, A., Nurmela, K. V. V., Huhtanen, P. & Griinari, J. M. (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Science 77, 165179.CrossRefGoogle Scholar
Shingfield, K. J., Reynolds, C. K., Hervás, G., Griinari, J. M., Grandison, A. S. & Beever, D. E. (2006). Examination of the persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet of dairy cows. Journal of Dairy Science 89, 714732.CrossRefGoogle ScholarPubMed
Shingfield, K. J., Reynolds, C. K., Lupoli, B., Toivonen, V., Yurawecz, M. P., Delmonte, P., Griinari, J. M., Grandison, A. S. & Beever, D. E. (2005). Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows given sunflower oil and fish oil. Animal Science 80, 225238.CrossRefGoogle Scholar
Sterk, A., Hovenier, R., Vlaeminck, B., Van Vuuren, A. M., Hendriks, W. H. & Dijkstra, J. (2010). Effects of chemically or technologically treated linseed products and docosahexaenoic acid addition to linseed oil on biohydrogenation of C18:3n3 in vitro. Journal of Dairy Science 93, 52865299.CrossRefGoogle ScholarPubMed
Sterk, A., Johansson, B. E. O., Taweel, H. Z. H., Murphy, M., Van Vuuren, A. M., Hendriks, W. H. & Dijkstra, J. (2011). Effects of forage type, forage to concentrate ratio, and crushed linseed supplementation on milk fatty acid profile in lactating dairy cows. Journal of Dairy Science 94, 60786091.CrossRefGoogle ScholarPubMed
St-Pierre, N. R. (2001). Invited review: integrating quantitative findings from multiple studies using mixed model methodology. Journal of Dairy Science 84, 741755.CrossRefGoogle ScholarPubMed
Vlaeminck, B., Mengistu, G., Fievez, V., De Jonge, L. & Dijkstra, J. (2008). Effects of in vitro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids in freeze-dried grass. Journal of Dairy Science 91, 11221132.CrossRefGoogle ScholarPubMed
Ward, A. T., Wittenberg, K. M. & Przybylski, R. (2002). Bovine milk fatty acid profiles produced by feeding diets containing solin, flax and canola. Journal of Dairy Science 85, 11911196.CrossRefGoogle ScholarPubMed
Whitlock, L. A., Schingoethe, D. J., AbuGhazaleh, A. A., Hippen, A. R. & Kalscheur, K. F. (2006). Milk production and composition from cows fed small amounts of fish oil with extruded soybeans. Journal of Dairy Science 89, 39723980.CrossRefGoogle ScholarPubMed
Whitlock, L. A., Schingoethe, D. J., Hippen, A. R., Kalscheur, K. F., Baer, R. J., Ramaswamy, N. & Kasperson, K. M. (2002). Fish oil and extruded soybeans fed in combination increase conjugated linoleic acids in milk of dairy cows more than when fed separately. Journal of Dairy Science 85, 234243.CrossRefGoogle ScholarPubMed
Zebeli, Q., Dijkstra, J., Tafaj, M., Steingass, H., Ametaj, B. N. & Drochner, W. (2008). Modelling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. Journal of Dairy Science 91, 20462066.CrossRefGoogle ScholarPubMed
Supplementary material: File

Sterk et al. supplementary material

Appendix

Download Sterk et al. supplementary material(File)
File 50.7 KB