Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T05:45:12.778Z Has data issue: false hasContentIssue false

Effects of anthelmintic treatment on ewe feed intake, digestion, milk production and lamb growth

Published online by Cambridge University Press:  22 September 2016

R. Z. ZHONG
Affiliation:
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, People's Republic of China
L. CHENG*
Affiliation:
Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, New Zealand
Y. Q. WANG
Affiliation:
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, People's Republic of China
X. Z. SUN
Affiliation:
Grassland Research Centre, AgResearch Limited, Private Bag 11008, Palmerston North 4442, New Zealand
D. W. LUO
Affiliation:
Grassland Research Centre, AgResearch Limited, Private Bag 11008, Palmerston North 4442, New Zealand
Y. FANG
Affiliation:
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, People's Republic of China
R. D. BUSH
Affiliation:
The University of Sydney, Faculty of Veterinary Science, 425 Werombi Road, Camden, NSW 2570, Australia
D. W. ZHOU*
Affiliation:
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, People's Republic of China
*
*To whom all correspondence should be addressed. Email: [email protected] and [email protected]
*To whom all correspondence should be addressed. Email: [email protected] and [email protected]

Summary

Twenty Small Tailed Han (STH) and 20 Ujumqin (UJU) ewes naturally infected with gastrointestinal nematodes were randomly assigned to one of four treatments arranged in a 2 × 2 factorial design, receiving anthelmintic treatment (AT) or non-anthelmintic treatment (NonAT) prior to lambing. After lambing, the effects of AT on feed intake, digestion and milk yield in ewes, and the growth rates of lambs fed their mother's milk were assessed for 28 days. Faecal samples were collected to determine faecal egg counts (FECs), milk was collected to measure milk yield and ewes and lambs were weighed to quantify daily body weight change. The results showed that AT significantly increased ewe dry matter intake (2411 g/d for AT and 2209 g/d for NonAT) and decreased FECs (50 eggs/g for AT and 2655 eggs/g for NonAT). All ewes lost weight after lambing, but body weight loss in the AT (43 g/d) was significantly less than in NonAT (84 g/d), and STH ewes (70 g/d) lost more weight than UJU ewes (58 g/d). Anthelmintic-treated ewes produced more milk for their lambs to consume. However, the extent of these positive effects of AT differed between STH and UJU ewes. The average daily body weight gain of lambs in AT was higher than those in NonAT. In conclusion, effective AT in ewes before lambing benefits subsequent lactation in ewes and growth rate in lambs.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alberti, E. G., Zanzani, S. A., Ferrari, N., Bruni, G. & Manfredi, M. T. (2012). Effects of gastrointestinal nematodes on milk productivity in three dairy goat breeds. Small Ruminant Research 106, Suppl, S12S17.CrossRefGoogle Scholar
Alberti, E. G., Zanzani, S. A., Gazzonis, A. L., Zanatta, G., Bruni, G., Villa, M., Rizza, R. & Manfredi, M. T. (2014). Effects of gastrointestinal infections caused by nematodes on milk production in goats in a mountain ecosystem: comparison between a cosmopolite and a local breed. Small Ruminant Research 120, 155163.CrossRefGoogle Scholar
Allah, M. A., Abass, S. F. & Allam, F. M. (2011). Factors affecting the milk yield and composition of Rahman and Chios sheep. International Journal of Livestock Production 2, 2430.Google Scholar
AOAC (1995). Official Methods of Analysis of the Association of Official Analytical Chemists, 16th edn. Arlington, USA: Association of Official Analytical Chemists.Google Scholar
Araujo, R. C., Pires, A. V., Susin, I., Mendes, C. Q., Rodrigues, G. H., Packer, I. U. & Eastridge, M. L. (2008). Milk yield, milk composition, eating behavior, and lamb performance of ewes fed diets containing soybean hulls replacing coastcross (Cynodon species) hay. Journal of Animal Science 86, 35113521.CrossRefGoogle ScholarPubMed
Ayadi, M., Matar, A. M., Aljumaah, R. S., Alshaikh, M. A. & Abouheif, M. (2014). Factors affecting milk yield, composition, and udder health of Naidi ewes. International Journal of Animal and Veterinary Advances 6, 2833.CrossRefGoogle Scholar
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B: Methodological 57, 289300.Google Scholar
Chu, M. X., Wang, J. Z., Wang, A. G., Li, N. & Fu, J. L. (2003). Association analysis between five microsatellite loci and litter size in Small Tail Han sheep. Asian-Australasian Journal of Animal Sciences 16, 15551559.CrossRefGoogle Scholar
Cringoli, G., Veneziano, V., Jackson, F., Vercruysse, J., Greer, A. W., Fedele, V., Mezzino, L. & Rinaldi, L. (2008). Effects of strategic anthelmintic treatments on the milk production of dairy sheep naturally infected by gastrointestinal strongyles. Veterinary Parasitology 156, 340345.CrossRefGoogle ScholarPubMed
Cringoli, G., Rinaldi, L., Veneziano, V., Mezzino, L., Vercruysse, J. & Jackson, F. (2009). Evaluation of targeted selective treatments in sheep in Italy: effects on faecal worm egg count and milk production in four case studies. Veterinary Parasitology 164, 3643.CrossRefGoogle ScholarPubMed
Cruz-Rojo, M. A., Martínez-Valladares, M., Álvarez-Sánchez, M. A. & Rojo-Vázquez, F. A. (2012). Effect of infection with Teladorsagia circumcincta on milk production and composition in Assaf dairy sheep. Veterinary Parasitology 185, 194200.CrossRefGoogle ScholarPubMed
Faizal, A. C. M., Rajapaksha, W. R. A. K. J. S. & Rajapakse, R. P. V. J. (2002). Benefit of the control of gastrointestinal nematode infection in goats in the dry zone of Sri Lanka. Journal of Veterinary Medicine, Series B: Infectious Diseases and Veterinary Public Health 49, 115119.CrossRefGoogle ScholarPubMed
Foreyt, W. J. (1997). Veterinary Parasitology Reference Manual, 4th edn. Pullman, USA: Washington State University.Google Scholar
Fthenakis, G. C., Papadopoulos, E. & Himonas, C. (2005). Effects of three anthelmintic regimes on milk yield of ewes and growth of lambs. Journal of Veterinary Medicine A: Physiology, Pathology, Clinical Medicine 52, 7882.CrossRefGoogle ScholarPubMed
Gross, S. J., Ryan, W. G. & Ploeger, H. W. (1999). Anthelmintic treatment of dairy cows and its effect on milk production. Veterinary Research 144, 581587.Google ScholarPubMed
Hoste, H. & Chartier, C. (1998). Response to challenge infection with Haemonchus contortus and Trichostrongylus colubriformis in dairy goats. Consequences on milk production. Veterinary Parasitology 74, 4345.CrossRefGoogle ScholarPubMed
Kaplan, R. M. (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477481.CrossRefGoogle ScholarPubMed
Melaku, A., Bogale, B., Chanie, M., Fentahun, T. & Berhanu, A. (2013). Study on utilization and efficacy of commonly used anthelmintics against gastrointestinal nematodes in naturally infected sheep in North Gondar, North-Western Ethiopia. African Journal of Pharmacy and Pharmacology 7, 679684.CrossRefGoogle Scholar
Miller, J. E., Bahirathan, M., Lemarie, S. L., Hembry, F. G., Kearney, M. T. & Barras, S. R. (1998). Epidemiology of gastrointestinal nematode parasitism in Suffolk and Gulf Coast Native sheep with special emphasis on relative susceptibility to Haemonchus contortus infection. Veterinary Parasitology 74, 5574.CrossRefGoogle ScholarPubMed
NRC (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington, DC, USA: The National Academy Press.Google Scholar
Pathak, A. K., Dutta, N., Banerjee, P. S., Pattanaik, A. K. & Sharma, K. (2013). Influence of dietary supplementation of condensed tannins through leaf meal mixture on intake, nutrient utilization and performance of Haemonchus contortus infected sheep. Asian-Australasian Journal of Animal Sciences 26, 14461458.CrossRefGoogle ScholarPubMed
R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ren, H. X., Li, L., Su, H. W., Xu, L. Y., Wei, C. H., Zhang, L., Li, H. B., Liu, W. Z. & Du, L. X. (2011). Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep. BMC Genomics 12, 411. DOI: 10.1186/1471-2164-12-411 CrossRefGoogle ScholarPubMed
Rinaldi, L., Veneziano, V. & Cringoli, G. (2007). Dairy goat production and the importance of gastrointestinal strongyle parasitism. Transactions of Royal Society of Tropical Medicine and Hygiene 101, 745746.CrossRefGoogle ScholarPubMed
Roeber, F., Jex, A. R. & Gasser, R. B. (2013). Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance – an Australian perspective. Parasites & Vectors 6, 153. DOI: 10.1186/1756-3305-6-153 CrossRefGoogle ScholarPubMed
Stafford, K. J., West, D. M. & Pomroy, W. E. (1994). Nematode worm egg output by ewes. New Zealand Veterinary Journal 42, 3032.CrossRefGoogle ScholarPubMed
Suarez, V. H., Cristel, S. L. & Busetti, M. R. (2009). Epidemiology and effects of gastrointestinal nematode infection on milk productions of dairy ewes. Parasite 16, 141147.CrossRefGoogle ScholarPubMed
Taylor, M. A., Coop, R. L. & Wall, R. L. (2007). Veterinary Parasitology, 3rd edn. Oxford, UK: Wiley-Blackwell Publishing Ltd.Google Scholar
Thomas, D. L., Berger, Y. M. & McKusick, B. C. (2001). Effects of breed, management system, and nutrition on milk yield and milk composition of dairy sheep. Journal of Animal Science 79, E Suppl, E16E20.CrossRefGoogle Scholar
Tsiboukis, D., Sazakli, E., Jelastopulu, E. & Leotsinidis, M. (2013). Anthelmintics residues in raw milk. Assessing intake by a children population. Polish Journal of Veterinary Sciences 16, 8591.CrossRefGoogle ScholarPubMed
Uriarte, J., Gracia, M. J. & Almeria, S. (1994). Efficacy of moxidectin against gastrointestinal nematode infections in sheep. Veterinary Parasitology 51, 301305.CrossRefGoogle ScholarPubMed
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal production. Journal of Dairy Science 74, 35833597.CrossRefGoogle Scholar
Veneziano, V., Santaniello, M., Schioppi, M., Morgoglione, M. E., Rufrano, D. & Cringoli, G. (2006). Field trial on the efficacy of netobimin against Dicrocoelium dendriticum in naturally infected sheep. Parassitologia 48, 202.Google Scholar
Waller, P. J. (2004). Management and control of nematode parasites of small ruminants in the face of total anthelmintic failure. Tropical Biomedicine 21, 713.Google ScholarPubMed
Wolstenholme, A. J., Fairweather, I., Prichard, R., von Samson-Himmelstjerna, G. & Sangster, N. C. (2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 469476.CrossRefGoogle ScholarPubMed
Zanzani, S. A., Gazzonis, A. L., Di Cerbo, A., Varady, M. & Manfredi, M. T. (2014). Gastrointestinal nematodes of dairy goats, anthelmintic resistance and practices of parasite control in Northern Italy. BMC Veterinary Research 10, 114. DOI: 10.1186/1746-6148-10-114 CrossRefGoogle ScholarPubMed
Zhong, R. Z., Li, H. Y., Sun, H. X. & Zhou, D. W. (2014). Effects of supplementation with dietary green tea polyphenols on parasite resistance and acute phase protein response to Haemonchus contortus infection in lambs. Veterinary Parasitology 205, 199207.CrossRefGoogle ScholarPubMed