Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T05:31:29.219Z Has data issue: false hasContentIssue false

Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine

Published online by Cambridge University Press:  02 September 2014

E. NICOLÁS
Affiliation:
CEBAS-CSIC, Campus de Espinardo, CP 30100, Murcia, Spain
J. F. MAESTRE-VALERO*
Affiliation:
CEBAS-CSIC, Campus de Espinardo, CP 30100, Murcia, Spain
J. J. ALARCÓN
Affiliation:
CEBAS-CSIC, Campus de Espinardo, CP 30100, Murcia, Spain
F. PEDRERO
Affiliation:
CEBAS-CSIC, Campus de Espinardo, CP 30100, Murcia, Spain
J. VICENTE-SÁNCHEZ
Affiliation:
SYMBORG SL, Campus de Espinardo 7, Edificio CEEIM, CP30100, Murcia, Spain
A. BERNABÉ
Affiliation:
SYMBORG SL, Campus de Espinardo 7, Edificio CEEIM, CP30100, Murcia, Spain
J. GÓMEZ-MONTIEL
Affiliation:
FRUTAS ESTHER S.A., CP30550, Abarán, Murcia, Spain
J. A. HERNÁNDEZ
Affiliation:
CEBAS-CSIC, Campus de Espinardo, CP 30100, Murcia, Spain
F. FERNÁNDEZ
Affiliation:
SYMBORG SL, Campus de Espinardo 7, Edificio CEEIM, CP30100, Murcia, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

In the present study, carried out in South-eastern Spain, a commercial arbuscular mycorrhizal fungus (AMF; Glomus iranicum var. tenuihypharum sp. nova) was introduced through drip irrigation to inoculate Crimson grapevines. Their effects on the physiological and nutritional activity were evaluated for 2 years (2011–12). Additionally, during the second year of experimentation, the persistence of mycorrhizae on the grapevine and their effects were innovatively analysed.

The AMF satisfactorily colonized the Crimson grapevine roots, improved the plants water status, induced an improvement in the photosynthetic performance that increased the water use efficiency, promoted the uptake of phosphorus (P), potassium (K) and calcium (Ca) and led to a mobilization of starch reserves in the apex in winter, which was possibly responsible for enhancing root development. Moreover, inoculated plants had significantly increased yield and improved quality of grapes, which led to early grape maturation. Overall, the persistent effect of AMF during the second year produced similar positive effects, although to a lesser extent, to those obtained in the inoculated treatment.

The results found in the present study show that this AMF application technique can be recommended for sustainable agriculture in arid and semi-arid areas. Moreover, as a result of the competition with the native mycorrhizae, periodic monitoring of the percentage of mycorrhizal colonization and re-inoculation in order to obtain all the positive effects evidenced in the inoculated treatment is recommended.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbot, L. K. & Robson, A. D. (1991). Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agriculture, Ecosystems and Environment 35, 121150.CrossRefGoogle Scholar
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation & Drainage Paper 56. Rome: FAO.Google Scholar
Aroca, R., Ruíz-Lozano, J. M., Zamarreño, A. M., Paz, J. A., García-Mina, J. M., Pozo, M. J. & López-Ráez, J. A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology 170, 4755.CrossRefGoogle ScholarPubMed
Azcón, R. B. (2000). Papel de la simbiosis micorrízica y su interacción con otros microorganismos rizosféricos en el crecimiento vegetal y sostenibilidad agrícola. In Ecología, Fisiología y Biotecnología de la Micorriza Arbuscular (Eds Alarcon, M. A. & Ferrera-Caerratim, R.), pp. 115. México, DF: Mundi-Prensa.Google Scholar
Azcón-Aguilar, C., Encina, C. L., Azcón, R. & Barea, J. M. (1994). Effect of arbuscular mycorrhiza on the growth and development of micropropagated Annona cherimola plants. Agricultural Science in Finland 3, 281287.Google Scholar
Begg, J. E. & Turner, N. C. (1970). Water potential gradients in field tobacco. Plant Physiology 46, 343346.CrossRefGoogle ScholarPubMed
Bennett, J. S. (2002). Relationships between carbohydrate supply and reserves and the reproductive growth of grapevines (Vitis vinifera L.). Ph.D. Thesis, Lincoln University, Canterbury, New Zealand.Google Scholar
Caglar, S. & Bayram, A. (2006). Effects of vesicular–arbuscular mycorrhizal (VAM) fungi on the leaf nutritional status of four grapevine rootstocks. European Journal of Horticultural Science 71, 109113.Google Scholar
Delgado, R., Martín, P., del Álamo, M. & González, M. R. (2004). Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilisation rates. Journal of the Science of Food and Agriculture 84, 623630.CrossRefGoogle Scholar
Estrada-Luna, A. A. & Davies, F. T. Jr (2001). Mycorrhizal fungi enhance growth and nutrient uptake of prickly-pear cactus (Opuntia albicarpa Scheinvar ‘Renya’) plantlets after ex vitro transplantation. The Journal of Horticultural Science and Biotechnology 76, 739745.CrossRefGoogle Scholar
Estrada-Luna, A. A. & Davies, F. T. Jr (2003). Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated Chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. Journal of Plant Physiology 160, 10731083.CrossRefGoogle ScholarPubMed
Evelin, H., Kapoor, R. & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany 104, 12631280.CrossRefGoogle ScholarPubMed
Failla, O., Bogoni, M., Porro, D. & Stringari, G. (1997). Soil and leaf analysis: effect of pedo-climatic, cultural and genetic factors on their calibration and interpretation. Acta Horticulturae 448, 225232.CrossRefGoogle Scholar
Fernández, M. & Juárez, M. (2011). Procedimiento de Obtención de un Agente Micorrizógeno. Solicitud de Patente Invención n° 201130566. Madrid, Spain: Oficina Española de Patentes y Marcas.Google Scholar
Foyer, C. H. (1987). The basis for source-sink interaction in leaves. Plant Physiology and Biochemistry 25, 649657.Google Scholar
García, M., Gallego, P., Daverède, C. & Ibrahim, H. (2001). Effect of three rootstocks on grapevine (Vitis vinifera L.) cv. Négrette, grown hydroponically, I: potassium, calcium, and magnesium nutrition. South African Journal for Enology and Viticulture 22, 101103.Google Scholar
García-Escudero, E., Romero, I., Benito, A., Domínguez, N. & Martín, I. (2013). Reference levels for leaf nutrient diagnosis of cv. Tempranillo grapevine in the Rioja appellation. Communications in Soil Science and Plant Analysis 44, 645654.CrossRefGoogle Scholar
Giovanetti, M. & Mosse, B. (1980). An evaluation of techniques for measuring vesicular–arbuscular mycorrhizal infection in roots. New Phytologist 84, 489500.CrossRefGoogle Scholar
Hamel, C. & Plenchette, C. (2007). Mycorrhizae in Crop Production. Binghamton, NY, USA: Haworth Press.CrossRefGoogle Scholar
Herrera-Peraza, R. A., Hamel, C., Fernández, F., Ferrer, R. L. & Furrazola, E. (2011). Soil-strain compatibility: the key to effective use of arbuscular mycorrhizal inoculants? Mycorrhiza 21, 183193.CrossRefGoogle ScholarPubMed
Hodge, A., Campbell, C. D. & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413, 297299.CrossRefGoogle ScholarPubMed
Jakobsen, I. & Rosendahl, L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist 115, 7783.CrossRefGoogle Scholar
Johansen, A., Finlay, R. D. & Olsson, P. A. (1996). Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 133, 705712.CrossRefGoogle Scholar
Kafkas, S. & Ortas, I. (2009). Various mycorrhizal fungi enhance dry weights, P and Zn uptake of four Pistacia species. Journal of Plant Nutrition 32, 146159.CrossRefGoogle Scholar
Karagiannidis, N., Nikolaou, N. & Mattheou, A. (1995). Influence of three VA-mycorrhiza species on the growth and nutrient uptake of three grapevine rootstocks and one table grape cultivar. Vitis 34, 8589.Google Scholar
Karagiannidis, N., Nikolaou, N., Ipsilantis, I. & Zioziou, E. (2007). Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition. Mycorrhiza 18, 4350.CrossRefGoogle ScholarPubMed
Kliewer, W. M. (1991). Methods for determining the nitrogen status of vineyards. In Proceedings of the International Symposium on Nitrogen in Grapes and Wines, June 18 and 19, 1991 Seattle, Washington (Ed. Rantz, J. M.), pp. 133147. Davis, CA, USA: The American Society for Enology and Viticulture.Google Scholar
Marjanović, Z. & Nehls, U. (2008). Ectomycorrhiza and water transport. In Mycorrhiza, 3rd edn (Ed. Varma, A.), pp. 149160. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Marschner, H. & Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159, 89102.CrossRefGoogle Scholar
Martín, I., Benito, A., Romero, I., Domínguez, N. & García-Escudero, E. (2013). Preliminary diagnosis and recommendation integrated system norms for leaf nutrient diagnosis of Tempranillo grapevine in the Rioja appellation. Communications in Soil Science and Plant Analysis 44, 655667.CrossRefGoogle Scholar
Martínez-Alvarez, V., Gallego-Elvira, B., Maestre-Valero, J. F. & Tanguy, M. (2011). Simultaneous solution for water, heat and salt balances in a Mediterranean coastal lagoon (Mar Menor, Spain). Estuarine, Coastal and Shelf Science 91, 250261.CrossRefGoogle Scholar
Mechri, B., Mariem, F. B., Baham, M., Elhadj, S. B. & Hammami, M. (2008). Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 40, 152161.CrossRefGoogle Scholar
Navarro-García, A., Bañon Árias, S. del P., Morte, A. & Sánchez-Blanco, M. J. (2011). Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza 21, 5364.CrossRefGoogle ScholarPubMed
Navarro-Ródenas, A., Bárzana, G., Nicolás, E., Carra, A., Schubert, A. & Morte, A. (2013). Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. Molecular Plant–Microbe Interactions 26, 10681078.CrossRefGoogle ScholarPubMed
Netzer, Y., Yao, C., Shenker, M., Bravdo, B. A. & Schwartz, A. (2009). Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis system. Irrigation Science 27, 109120.CrossRefGoogle Scholar
Nikolaou, N. A., Koukourikou, M., Angelopoulos, K. & Karagiannidis, N. (2003). Cytokinin content and water relations of ‘Cabernet Sauvignon’ grapevine exposed to drought stress. The Journal of Horticultural Science and Biotechnology 78, 113118.CrossRefGoogle Scholar
Petgen, M., Schropp, A., George, E. & Romheld, V. (1998). Influence of different inoculum places of the mycorrhizal fungus Glomus mosseae on mycorrhizal colonization in grapevine rootstocks (Vitis sp.). Vitis 37, 99105.Google Scholar
Phillips, J. M. & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55, 158161.CrossRefGoogle Scholar
Possingham, J. V. & Groot Obbink, J. (1971). Endotrophic mycorrhiza and the nutrition of grape vines. Vitis 10, 120130.Google Scholar
Pou, A., Medrano, H., Tomàs, M., Martorell, S., Ribas-Carbó, M. & Flexas, J. (2012). Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour. Plant and Soil 359, 335349.CrossRefGoogle Scholar
Pozo, M. J. & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology 10, 393398.CrossRefGoogle ScholarPubMed
Ruíz-Lozano, J. M. & Azcón, R. (1995). Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiologia Plantarum 95, 472478.CrossRefGoogle Scholar
Ryan, M. H. & Graham, J. H. (2002). Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant and Soil 244, 263271.CrossRefGoogle Scholar
Sánchez-Blanco, M. J., Ferrández, T., Morales, M. A., Morte, A. & Alarcón, J. J. (2004). Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. Journal of Plant Physiology 161, 675682.CrossRefGoogle ScholarPubMed
Scandella, D., Kraeutler, E. & Vénien, S. (1997). Anticiper la qualité gustative des pêches et nectarines. Infos CTIFL 129, 1619. [In French].Google Scholar
Schellenbaum, L., Berta, G., Ravolanirina, F., Tisserant, B., Gianinazzi, S. & Fitter, A. H. (1991). Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Annals of Botany 68, 135141.CrossRefGoogle Scholar
Schnepf, A., Roose, T. & Schweiger, P. (2008). Growth model for arbuscular mycorrhizal fungi. Journal of the Royal Society Interface 5, 773784.CrossRefGoogle ScholarPubMed
Schreiner, R. P. (2007). Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Applied Soil Ecology 36, 205215.CrossRefGoogle Scholar
Schreiner, R. P. & Mihara, K. L. (2009). The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101, 599611.CrossRefGoogle ScholarPubMed
Schubert, A., Cammarata, S. & Eynard, I. (1988). Growth and root colonization of grapevines inoculated with different mycorrhizal endophytes. Horticultural Science 23, 302303.Google Scholar
Valentine, A. J., Osborne, B. A. & Mitchell, D. T. (2002). Form of inorganic nitrogen influences mycorrhizal colonization and photosynthesis of cucumber. Scientia Horticulturae 92, 229239.CrossRefGoogle Scholar
Verbruggen, E., Van Der Heijden, M. G. A., Rilling, M. C. & Kiers, E. T. (2013). Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytologist 197, 11041109.CrossRefGoogle ScholarPubMed
Waschkies, C., Schropp, A. & Marschenr, H. (1994). Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant and Soil 162, 219227.CrossRefGoogle Scholar
Watson, M. E. & Galliher, T. L. (2001). Comparison of Dumas and Kjeldahl methods with automatic analyzers on agricultural samples under routine rapid analysis conditions. Communications in Soil Science and Plant Analysis 32, 20072019.CrossRefGoogle Scholar
Zapata, C., Deléens, E., Chaillou, S. & Magné, C. (2004). Partitioning and mobilization of starch and N reserves in grapevine (Vitis vinifera L.). Journal of Plant Physiology 161, 10311040.CrossRefGoogle Scholar