Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T02:32:37.089Z Has data issue: false hasContentIssue false

Effect of growth hormone on the response to insulin and glucose turnover in sheep

Published online by Cambridge University Press:  27 March 2009

M. T. Rose
Affiliation:
National Institute of Animal Industry, Department of Physiology, PO Box 5, Tsukuba Norindanchi, Ibaraki 305, Japan
Y. Obara
Affiliation:
National Institute of Animal Industry, Department of Physiology, PO Box 5, Tsukuba Norindanchi, Ibaraki 305, Japan

Summary

The hyperinsulinaemic euglycaemic clamp technique was used to determine the effect of recombinant bovine growth hormone on the response to insulin in castrate male Corriedale sheep. Saline or growth hormone (6·3 μg/min/animal) was infused into four sheep from the beginning of each experiment for 9 h, such that eight clamp experiments were performed, four with growth hormone and four controls. After a basal period of 3 h, insulin was sequentially infused at 1, 3 and then 6 mU/kg/min for 2 h each and the plasma glucose concentration was maintained at the value noted during the basal period by a variable rate of glucose infusion. Short-term growth hormone infusion decreased the glucose infusion rate (GIR) required to maintain eugylcaemia as well as the rates of glucose appearance and disappearance. The glucose metabolic clearance rate (MCR) was also decreased by the growth hormone treatment at all rates of insulin infusion, the average decrease ranging between 20 and 30%. The insulin concentration causing half maximal stimulation of glucose MCR and GIR was unchanged by growth hormone treatment. Endogenous glucose production was not consistently affected by either the growth hormone or insulin treatments. The results of this experiment demonstrate that growth hormone decreases the responsiveness of peripheral tissues to insulin, possibly at a site beyond the receptor.

Type
Animals
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Argoud, G. M., Schade, D. S. & Eaton, R. P. (1987). Underestimation of hepatic glucose production by radioactive and stable tracers. American Journal of Physiology (Endocrinology and Metabolism) 252, E606–E615.CrossRefGoogle ScholarPubMed
Barbano, D. M., Lynch, J. M., Bauman, D. E., Hartnell, G. F., Hintz, R. L. & Nemeth, M. A. (1992). Effect of a prolonged-release formulation of N-methionyl bovine somatotropin (Sometribove) on milk composition. Journal of Dairy Science 75, 17751793.CrossRefGoogle ScholarPubMed
Boisclair, Y. R., Dunshea, F. R., Bell, A. W., Bauman, D. E. & Harkins, M. (1989). Effect of bovine somatotropin on glucose metabolism in steers. FASEB Journal 3, A938 (Abstract).Google Scholar
Breier, B. H., Gluckman, P. D., McCutcheon, S. N. & Davis, S. R. (1991). Physiological responses to somatotropin in the ruminant. Journal of Dairy Science 74 (Supplement 2), 2034.Google ScholarPubMed
Brockman, R. P., Bergman, E. N., Pollak, W. L. & Brondum, J. (1975). Studies of glucose production in sheep using [6-3H]glucose and [U14C]glucose. Canadian Journal of Physiology and Pharmacology 53, 11861189.CrossRefGoogle Scholar
Burton, J. L., McBride, B. W., Block, E., Glimm, D. R. & Kennelly, J. J. (1994). A review of bovine growth hormone. Canadian Journal of Animal Science 14, 167201.CrossRefGoogle Scholar
Cattaneo, A. G., Östenson, C.-G., Khan, A. & Efendiĉ, S. (1985). Growth hormone treatment in vivo impairs insulin sensitivity of adipocytes isolated from normal but not from type 2 diabetic rats. Acta Endocrinologica Supplement 110, 17.Google Scholar
Chandrasena, L. G., Bjorkman, O. & Phillips, R. W. (1982). Response of sheep to insulin and hyperglycaemia with glucose clamping technique. Federation Proceedings 41, 342 (Abstract 430).Google Scholar
Cherrington, A. D. & Vranic, M. (1973). Effect of arginine on glucose turnover and plasma free fatty acids in normal dogs. Diabetes 22, 537543.CrossRefGoogle ScholarPubMed
Cowan, J. S. & Hetenyi, G. (1971). Glucoregulatory response in normal and diabetic dogs recorded by a new tracer method. Metabolism 20, 360372.CrossRefGoogle ScholarPubMed
Davis, S. R., Gluckman, P. D., Hodgkinson, S. C., Farr, V. C., Breier, B. W. & Burleigh, B. D. (1989). Comparison of the effects of administration of recombinant bovine growth hormone or N-Met insulin-like growth factor-I to lactating goats. Journal of Endocrinology 123, 3339.CrossRefGoogle ScholarPubMed
DeFronzo, R. A., Torin, J. D. & Andres, R. (1979). Glucose clamp technique: a method for quantifying insulin secretion and resistance. American Journal of Physiology (Endocrinology and Metabolism) 237, E214–E223.CrossRefGoogle ScholarPubMed
Douberne, L., Greenfield, M. S., Schultz, B. & Reaven, G. M. (1981). Enhanced glucose responsiveness during prolonged glucose clamp studies. Diabetes 30, 829835.CrossRefGoogle Scholar
Enright, W. J., Chapin, L. T., Moseley, W. M., Zinn, S. A., Kamdar, M. B., Krabill, L. F. & Tucker, H. A. (1989). Effects of infusions of various doses of bovine growth hormone-releasing factor on blood hormones and metabolites in lactating Holstein cows. Journal of Endocrinology 122, 671679.CrossRefGoogle ScholarPubMed
Enright, W. J., Quirke, J. F., Gluckman, P. D., Breier, B. H., Kennedy, L. G., Hart, I. C., Roche, J. F., Coert, A. & Allen, P. (1990). Effects of long-term administration of pituitary-derived bovine growth hormone and estradiol on growth in steers. Journal of Animal Science 68, 23452356.CrossRefGoogle ScholarPubMed
Foss, S. D. (1970). A method of exponential curve fitting by numerical integration. Biometrics 26, 815821.CrossRefGoogle Scholar
Fuller, M. F., Weekes, T. E. C., Cadenhead, A. & Bruce, J. B. (1977). The protein-sparing effect of carbohydrate. 2. The role of insulin. British Journal of Nutrition, 38, 489496.CrossRefGoogle ScholarPubMed
Gopinath, R. & Etherton, T. D. (1989). Effects of porcine growth hormone on glucose metabolism of pigs. II. Glucose tolerance, peripheral tissue insulin sensitivity and glucose kinetics. Journal of Animal Science 67, 689697.CrossRefGoogle ScholarPubMed
Janes, A. N., Weekes, T. E. C. & Armstrong, D. G. (1985). Insulin action and glucose metabolism in sheep fed on dried-grass or ground, maize-based diets. British Journal of Nutrition 54, 459471.CrossRefGoogle ScholarPubMed
Johke, T. (1978). Effects of TRH on circulating growth hormone, prolactin and triiodothyronine levels in the bovine. Endocrinologia Japonica 25, 1926.CrossRefGoogle ScholarPubMed
Kahn, C. R. (1980). Role of insulin receptors in insulinresistant states. Metabolism 27, 455524.CrossRefGoogle Scholar
Marcus, R., Butterfield, G., Holloway, L., Gilliland, L., Baylink, D. J., Hintz, R. L. & Sherman, B. M. (1990). Effects of short term administration of recombinant human growth hormone to elderly people. Journal of Clinical Endocrinology and Metabolism 70, 519527.CrossRefGoogle ScholarPubMed
McDowell, G. H., Gooden, J. M., Leenanuruksa, D., Jois, M. & English, A. W. (1987). Effects of exogenous growth hormone on milk production and nutrient uptake by muscle and mammary tissues of dairy cows in midlactation. Australian Journal of Biological Sciences 40, 295306.CrossRefGoogle ScholarPubMed
McLaughlin, C. L., Rogan, G. J., Buonomo, F. C., Cole, W. J., Hartnell, G. F., Hudson, S., Kasser, T. R., Miller, M. A. & Baile, C. A. (1991). Finishing lamb performance responses to bovine and porcine somatotropins administered by Alzet pumps. Journal of Animal Science 69, 40394048.CrossRefGoogle ScholarPubMed
Metcalf, J. A. & Weekes, T. E. C. (1990). Effect of plane of nutrition on insulin sensitivity during lactation in the ewe. Journal of Dairy Research 57, 465478.CrossRefGoogle ScholarPubMed
Metcalf, J. A., Vernon, R. G., Flint, D. J. & Weekes, T. E. C. (1987). Insulin binding to skeletal muscle microsomes during lactation in sheep. Proceedings of the Nutrition Society 46, 47A.Google Scholar
Mills, S. E., Armentano, L. E., Russell, R. W. & Young, J. W. (1981). Rapid and specific isolation of radioactive glucose from biological samples. Journal of Dairy Science 64, 17191723.CrossRefGoogle ScholarPubMed
Radziuk, J., Norwich, K. H. & Vranic, M. (1978). Experimental validation of measurements of glucose turnover in nonsteady state. American Journal of Physiology (Endocrinology and Metabolism) 234, E84– E93.CrossRefGoogle ScholarPubMed
Rizza, R. A., Mandarino, L. J. & Gerich, J. E. (1981). Dose-response characteristics for effects of insulin on production and utilization of glucose in man. American Journal of Physiologv (Endocrinology and Metabolism) 240, E630–E639.CrossRefGoogle ScholarPubMed
Sano, H., Matsunobu, S., Abe, T. & Terashima, Y. (1992). Combined effects of diet and cold exposure on insulin responsiveness to glucose and tissue responsiveness to insulin in sheep. Journal of Animal Science 70, 35143520.CrossRefGoogle ScholarPubMed
Sasaki, S. (1989). Insulin resistance in ovine skeletal muscle: insulin binding and insulin action. Asian and Australasian Journal of Animal Science 2, 218219.CrossRefGoogle Scholar
Schmidt, S. P. & Keith, R. K. (1983). Effects of diet and energy intake on kinetics of glucose metabolism in steers. Journal of Nutrition 113, 21552163.CrossRefGoogle ScholarPubMed
Schoreler, D. A., Brown, C., Nakamura, K., Nakagawa, A., Mazzeo, R. S., Brooks, G. A. & Budinger, T. F. (1984). Influence of metabolic fuel on the 13C/12C ratio of breath CO2. Biomedical Mass Spectrometry 11, 557561.CrossRefGoogle Scholar
Sechen, S. J., Dunshea, F. R. & Bauman, D. E. (1990). Somatotropin in lactating cows: effect on response to epinephrine and insulin. American Journal of Physiology (Endocrinology and Metabolism) 258, E582–E588.CrossRefGoogle Scholar
Steele, R., Wall, J. S., DeBodo, R. C. & Altszuler, N. (1956). Measurement of size and turnover rate of body glucose pool by the isotope dilution method. American Journal of Physiology (Endocrinology and Metabolism) 187, 1524.CrossRefGoogle ScholarPubMed
Vernon, R. G. & Taylor, E. (1988). Insulin, dexamethasone and their interactions in the control of glucose metabolism in adipose tissue from lactating and non-lactating sheep. Biochemical Journal 256, 509514.CrossRefGoogle Scholar
Vernon, R. G., Faulkner, A., Hay, W. W., Calvert, D. T. & Flint, D. J. (1990). Insulin resistance of hind-limb tissues in vivo in lactating sheep. Biochemical Journal 270, 783786.CrossRefGoogle ScholarPubMed
Wastney, M. E., Wolff, J. E., Bickerstaffe, R., Ramberg, C. F. & Berman, M. (1983). Kinetics of glucose metabolism in sheep. Australian Journal of Biological Sciences 36, 463474.CrossRefGoogle ScholarPubMed
Weekes, T. E. C. (1979). Carbohydrate metabolism. In Digestive Physiology and Nutrition of Ruminants, 2nd Edn, Vol. 2 (Ed. Church, D. C.), pp. 187209. Oregon: O & B Books.Google Scholar
Weekes, T. E. C. (1991). Hormonal control of glucose metabolism. Physiological Aspects of Digestion and Metabolism in Ruminants: Proceedings of the 7th International Symposium on Ruminant Physiology (Eds Tsuda, T., Sasaki, Y. & Kawashima, R.), pp. 183200. San Diego: Academic Press.CrossRefGoogle Scholar
Weekes, T. E. C., Sasaki, Y. & Tsuda, T. (1983). Enhanced responsiveness to insulin in sheep exposed to cold. American Journal of Physiology (Endocrinology and Metabolism) 244, E335–E345.CrossRefGoogle ScholarPubMed