Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-21T00:55:53.834Z Has data issue: false hasContentIssue false

Effect of a duodenal infusion of methionine on erythrocyte reduced glutathione of sheep

Published online by Cambridge University Press:  27 March 2009

R. M. W. Sumner
Affiliation:
Departments of Biochemistry and Nutrition, and Physiology, University of New England, ArmidaleN.S.W. 2351, Australia
D. W. Peter
Affiliation:
Departments of Biochemistry and Nutrition, and Physiology, University of New England, ArmidaleN.S.W. 2351, Australia
P. G. Board
Affiliation:
Departments of Biochemistry and Nutrition, and Physiology, University of New England, ArmidaleN.S.W. 2351, Australia

Extract

Reduced glutathione (GSH) is synthesized within blood erythrocytes from the constituent nonessential amino acids, glutamic acid, cysteine and glycine. The concentration of GSH in. erythrocytes can therefore be affected by the permeability of erythrocyte membranes to certain of these amino acids and their availability within the erythrocyte (Young, Ellory & Tucker, 1976; Smith, 1977). Alterations in the activity of the two enzymes responsible for GSH synthesis, γ-glutamyl cysteine synthetase and glutathione synthetase can likewise influence GSH concentration (Smith, Lee & Mia, 1973; Blume, Paniker & Beutler, 1974; Wellner et al. 1974; Board, Morris & Peter, 1976).

Type
Short Notes
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agar, N. S. (1975). Glutathione polymorphism in sheep red blood cells. International Journal of Biochemistry 6, 843852.CrossRefGoogle Scholar
Agar, N. S., Roberts, J. & Evans, J. V. (1972). Erythrocyte glutathione polymorphism in sheep. Australian Journal of Biological Science 25, 619626.CrossRefGoogle ScholarPubMed
Blume, K. G., Paniker, N. B. & Beutler, E. (1974). On the regulation of red cell glutathione levels. In Glutathione (ed. Flohé, L, Benöhr, H. Ch, Sies, H., Waller, H. D. & Wendel, A.). Stuttgart: Georg Thieme.Google Scholar
Board, P. G., Morris, R. J. H. & Peter, D. W. (1976). The enzymes of glutathione synthesis in erythrooytes from GSH-high and GSH-low type Australian Merino sheep. International Journal of Biochemistry 7, 381384.CrossRefGoogle Scholar
Board, P. G., Peter, D. W. & Morris, R. J. H. (1976). Seasonal variations in sheep erythrocyte reduced glutathione. Journal of Agricultural Science, Cambridge 87, 461463.CrossRefGoogle Scholar
Corbett, J. L., Lynch, J. J., Nicol, G. R. & Beeston, J. W. U. (1976). A versatile peristaltic pump designed for grazing lambs. Laboratory Practice 25, 458462.Google ScholarPubMed
Downes, A. M., Langlands, J. P. & Reis, P. J. (1975). Effects of sulphur supplementation on sheep and cattle production. In Sulphur in Australian Agriculture (ed. McLachlan, K. D.), pp. 117124. Sydney University Press.Google Scholar
Finkelstein, J. D. (1970). Control of sulphur metabolism in mammals. In Symposium: Sulphur in Nutrition (ed. Muth, O. H. and Oldfield, J. E.), pp. 4660. Wesport: AVI Publishing Co.Google Scholar
Mudd, S. H., Finkelstein, J. D., Irreverre, F. & Laster, L. (1965). Trans-sulphuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. Journal of Biological Chemistry 240, 43824392.CrossRefGoogle Scholar
Roberts, J. & Agar, N. S. (1971). An improved method for the automated analysis of erythrocyte reduced glutathione. Clinica Chimica Acta 34, 475480.CrossRefGoogle ScholarPubMed
Smith, J. E. (1977). Elevated erythrocyte glutathione associated with elevated substrate in high- and lowglutathione sheep. Biochimica et Biophysica Acta 496, 516520.CrossRefGoogle ScholarPubMed
Smith, J. E., Lee, M. S. & Mia, A. S. (1973). Decreased γ-glutamyl-cysteine synthetase: the probable cause of glutathione deficiency in sheep erythrocytes. Journal of Laboratory and Clinical Medicine 82, 713718.Google Scholar
Tao, R. C., Asplund, J. M. & Kappel, O. C. (1974.) Response of nitrogen metabolism, plasma amino acids and insulin levels to various levels of methionine infusion in sheep. Journal of Nutrition 104, 16461656.CrossRefGoogle ScholarPubMed
Wellner, V. P., Sekura, B., Meister, A. & Larsson, A. (1974). Glutathione synthetase deficiency, an inborn error of metabolism involving the γ-glutamyl cycle in patients with 5-ox-prolinuria (proglutamic aoiduria). Proceedings of the National Academy of Science of the U.S.A. 71, 25052509.CrossRefGoogle Scholar
Williams, A. J. & Leng, R. A. (1972). The effect of abomasal infusions of L-cystine and DL-methionine on the entry rate of cystine in sheep. Proceedings of the Australian Society of Animal Production 9, 326330.Google Scholar
Williams, A. J., Leng, R. A. & Stephenson, S. K., (1972). Metabolism of cystine by Merino sheep genetically different in wool production. 1. Comparison of the entry rates of cystine in sheep from flocks selectively bred for high and low fleece weight. Australian Journal of Biological Science 25, 12591268.CrossRefGoogle Scholar
Young, J. D., Ellory, J. C. & Tucker, E. M. (1976). Amino acid transport in normal and glutathione-deficient sheep erythrocytes. Biochemical Journal 154, 4348.CrossRefGoogle ScholarPubMed
Young, J. D., Nimmo, I. A. & Hall, J. G. (1975). The relationship between GSH, GSSG and non-GSH thiol in GSH-deficient erythrocytes from Finnish Landrace and Tasmanian Merino sheep. Biochimica et Biophysica Acta 404, 124131.CrossRefGoogle ScholarPubMed