Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T21:29:48.597Z Has data issue: false hasContentIssue false

Economic and agronomic impact of commercialized GM crops: a meta-analysis

Published online by Cambridge University Press:  28 February 2012

F. J. AREAL*
Affiliation:
European Commission, Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS), Edificio Expo, Avda. Inca Garcilaso 3, E-41092 Seville, Spain
L. RIESGO
Affiliation:
European Commission, Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS), Edificio Expo, Avda. Inca Garcilaso 3, E-41092 Seville, Spain
E. RODRÍGUEZ-CEREZO
Affiliation:
European Commission, Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS), Edificio Expo, Avda. Inca Garcilaso 3, E-41092 Seville, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The present paper presents a meta-analysis of the economic and agronomic performance of genetically modified (GM) crops worldwide. Bayesian, classical and non-parametric approaches were used to evaluate the performance of GM crops v. their conventional counterparts. The two main GM crop traits (herbicide tolerant (HT) and insect resistant (Bt)) and three of the main GM crops produced worldwide (Bt cotton, HT soybean and Bt maize) were analysed in terms of yield, production cost and gross margin. The scope of the analysis covers developing and developed countries, six world regions, and all countries combined. Results from the statistical analyses indicate that GM crops perform better than their conventional counterparts in agronomic and economic (gross margin) terms. Regarding countries’ level of development, GM crops tend to perform better in developing countries than in developed countries, with Bt cotton being the most profitable crop grown.

Type
Crops and Soils Review
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abel, C. (2006). Czech in time for GM crops. Farmers Weekly (UK) 145, 3638.Google Scholar
Barwale, R. B., Gadwal, V. R., Zehr, U. & Zehr, B. (2004). Prospects for Bt cotton technology in India. AgBioForum: The Journal of Agrobiotechnology Management and Economics 7, 2326.Google Scholar
Bennett, R. M., Ismael, Y., Kambhampati, U. & Morse, S. (2004 b). Economic impact of genetically modified cotton in India. AgBioForum: The Journal of Agrobiotechnology Management and Economics 7, 96100.Google Scholar
Bennett, R., Ismael, Y. & Morse, S. (2005). Explaining contradictory evidence regarding impacts of genetically modified crops in developing countries. Varietal performance of transgenic cotton in India. Journal of Agricultural Science, Cambridge 143, 3541.CrossRefGoogle Scholar
Bennett, R., Ismael, Y., Morse, S. & Shankar, B. (2004 a). Reductions in insecticide use from adoption of Bt cotton in South Africa: impacts on economic performance and toxic load to the environment. Journal of Agricultural Science, Cambridge 142, 665674.CrossRefGoogle Scholar
Bennett, R., Morse, S. & Ismael, Y. (2003). The benefits of Bt cotton to small-scale producers in developing countries – the case of South Africa. In Proceedings of the Seventh ICABR Conference on Public Goods and Public Policy for Agricultural Biotechnology, 29 June–3 July 2003, Ravello, Italy. Rome: University of Rome. Available from: http://www.economia.uniroma2.it/conferenze/icabr2003/papers/papers.htm#ECONOMIC%20IMPACT (verified 20 January 2012).Google Scholar
Bonhof, M. J., Van Huis, A., Kiros, F. G. & Dibogo, N. (2001). Farmers’ perceptions of importance, control methods and natural enemies of maize stem borers at the Kenyan coast. Insect Science and its Application 21, 3342.Google Scholar
Bonny, S. (2003). Why are most Europeans opposed to GMOs? Factors explaining rejection in France and Europe. Electronic Journal of Biotechnology 6, 5071.CrossRefGoogle Scholar
Brethour, C., Mussell, A., Mayer, H. & Martin, L. (2002). Agronomic, Economic and Environmental Impacts of the Commercial Cultivation of Glyphosate Tolerant Soybeans in Ontario. Final Report. Ontario, Canada: Council for Biotechnology Information.Google Scholar
Brookes, G. (2005). The farm-level impact of herbicide-tolerant soybean in Romania. AgBioForum: The Journal of Agrobiotechnology Management and Economics 8, 235241.Google Scholar
Brookes, G. (2007). The Benefits of Adopting Genetically Modified, Insect Resistant (Bt) Maize in the European Union (EU): First Results from 1998–2006 Plantings. Dorchester, UK: PG Economics Ltd. Available from: http://www.pgeconomics.co.uk/pdf/Benefitsmaize.pdf (verified 20 January 2012).Google Scholar
Brookes, G. & Barfoot, P. (2005). GM crops: the global economic and environmental impact-the first nine years 1996–2004. AgBioForum: The Journal of Agrobiotechnology Management and Economics 8, 187196.Google Scholar
Canola Council of Canada (2001). An Agronomic and Economic Assessment of Transgenic Canola. Winnepeg, Canada: Canola Council of Canada.Google Scholar
Carpenter, J. E. (2010). Peer-reviewed surveys indicate positive impact of commercialized crops. Nature Biotechnology 28, 319321.CrossRefGoogle ScholarPubMed
Chib, S. & Greenberg, E. (1995). Understanding the Metropolis–Hastings algorithm. American Statistician 49, 327335.Google Scholar
Crost, B., Shankar, B., Bennett, R. & Morse, S. (2007). Bias from farmer self-selection in genetically modified crop productivity estimates: evidence from Indian data. Journal of Agricultural Economics 58, 2436.CrossRefGoogle Scholar
Cui, X., Hwang, J. T. G., Qiu, J., Blades, N. J. & Churchill, G. A. (2005). Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6, 5975.CrossRefGoogle ScholarPubMed
Dannenberg, A. (2009). The dispersion and development of consumer preferences for genetically modified food: a meta-analysis. Ecological Economics 68, 21822192.CrossRefGoogle Scholar
Diaz-Osorio, J., Herrera, R., Valderrama, J. & Llanos-Ascencio, J. L. (2004). Potential changes in the competitiveness of maize growers in Central Chile through the use of transgenic seed (Bt and RR). Spanish Journal of Agricultural Research 2, 145156.CrossRefGoogle Scholar
Doyle, B., Reeve, I. & Barclay, E. (2002). The Performance of Ingard Cotton in Australia during the 2000/2001 Season. University of New England, Australia: Institute for Rural Futures.Google Scholar
Duffy, M. & Smith, D. (2000). Estimated Costs of Crop Production in Iowa. University Extension FM1712. Ames, IA: Iowa State University. Available from: http://www2.econ.iastate.edu/faculty/duffy/Pages/2001FM1712.pdf (verified 20 January 2012).Google Scholar
Ecobichon, E. G. (2001). Pesticide use in developing countries. Toxicology 160, 2733.CrossRefGoogle ScholarPubMed
Efron, B. & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. NY: Chapman & Hall/CRC.CrossRefGoogle Scholar
Ervin, D. E., Carrière, Y., Cox, W. J., Fernández-Cornejo, J., Jussaume, R. A., Marra, M. C., Owen, M. D. K., Raven, P. H., Wolfenbarger, L. L. & Zilberman, D. (2010). Impact of Genetically Engineered Crops on Farm Sustainability in the United States. Washington, DC: National Academies Press.Google Scholar
European Commission (2008). Special Eurobarometer 295/Attitudes of European Citizens towards the Environment. Report. Brussels: European Commission.Google Scholar
Falck-Zepeda, J. B., Traxler, G. & Nelson, R. G. (2000 a). Surplus distribution from the introduction of a biotechnology innovation. American Journal of Agricultural Economics 82, 360369.Google Scholar
Falck-Zepeda, J. B., Traxler, G. & Nelson, R. G. (2000 b). Rent creation and distribution from biotechnology innovations: the case of Bt cotton and herbicide-tolerant soybean in 1997. Agribusiness 16, 2132.3.0.CO;2-F>CrossRefGoogle Scholar
Fernandez-Cornejo, J. & Li, J. (2005). The impacts of adopting genetically engineered crops in the USA: the case of Bt corn. In American Agricultural Economics Association 2005 Annual Meeting, 24–27 July 2005, Providence, RI, USA. RI: AAEA. Available from: http://ageconsearch.umn.edu/bitstream/19318/1/sp05fe01.pdf (verified 20 January 2012).Google Scholar
Fernandez-Cornejo, J. & McBride, W. D. (2000). Genetically Engineered Crops for Pest Management in U.S. Agriculture: Farm Level Effects. AER-786. Washington, DC: U.S. Department of Agriculture Economic Research Service.Google Scholar
Fok, M. A. C., Gouse, M., Hofs, J.-L. & Kirsten, J. (2007). Contextual appraisal of GM cotton diffusion in South Africa. Life Sciences International Journal 1, 468482.Google Scholar
Foulley, J. L. & Quaas, R. L. (1995). Heterogeneous variances in Gaussian linear mixed models. Genetics Selection Evolution 27, 211228.CrossRefGoogle Scholar
Gandhi, V. P. & Namboodiri, N. V. (2006). The Adoption and Economics of Bt Cotton in India: Preliminary Results from a Study. Working Paper No.2006-09-04. Ahmedabad, India: Indian Institute of Management.Google Scholar
Gaskell, G., Allansdottir, A., Allum, N., Corchero, C., Fischler, C., Hampel, J., Jackson, J., kronberger, N., Mejlgaard, N., Revuelta, G., Schreiner, C., Stares, S., Torgersen, H. & Wagner, W. (2006). Eurobarometer 64·3/ Europeans and Biotechnology in 2005: Patterns and Trends. Brussels: European Commission.Google Scholar
Geman, S. & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721741.CrossRefGoogle ScholarPubMed
Gómez-Barbero, M., Berbel, J. & Rodriguez-Cerezo, E. (2008). Adoption and Performance of the First GM Crop introduced in EU Agriculture: Bt Maize in Spain. JRC Scientific and Technical Reports. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Gouse, M., Kirsten, J. F. & Jenkins, L. (2003). Bt cotton in South Africa: adoption and the impact on farm incomes amongst small-scale and large scale farmers. Agrekon 42, 1528.CrossRefGoogle Scholar
Gouse, M., Pray, C. E., Kirsten, J. & Schimmelpfenning, D. (2005). A GM subsistence crop in Africa: the case of Bt white maize in South Africa. International Journal of Biotechnology 7, 8494.CrossRefGoogle Scholar
Gouse, M., Piesse, J., Thirtle, C. & Poulton, C. (2009). Assessing the performance of GM maize amongst smallholders in KwaZulu-Natal, South Africa. AgBioForum: The Journal of Agrobiotechnology Management and Economics 12, 7889.Google Scholar
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97109.CrossRefGoogle Scholar
Hategekimana, B. (2002). Genetically Modified Grain Corn and Soybean in Quebec and Ontario in 2000 and 2001. Agriculture and Rural Working Paper Series, No. 54. Ontario, Canada: Statistics Canada.Google Scholar
Hillocks, R. J. (2009). GM cotton for Africa. Outlook on Agriculture 38, 311316.CrossRefGoogle Scholar
Hofs, J.-L., Fok, M. & Vaissayre, M. (2006). Impact of Bt cotton adoption on pesticide use by smallholders: a 2-year survey in Makhatini Flats (South Africa). Crop Protection 25, 984988.CrossRefGoogle Scholar
Huang, J., Hu, R., Fan, C., Pray, C. E. & Rozelle, S. (2002 a). Bt cotton benefits, costs and impacts in China. AgBioForum: The Journal of Agrobiotechnology Management and Economics 5, 153166.Google Scholar
Huang, J., Hu, R., Rozelle, S., Qiao, F. & Pray, C. E. (2002 b). Transgenic varieties and productivity of smallholder cotton farmers in China. Australian Journal of Agricultural and Resource Economics 46, 367387.CrossRefGoogle Scholar
International Monetary Fund (2009). World Economic and Financial Surveys. World Economic Outlook Database – WEO Groups and Aggregates Information. Washington, DC: International Monetary Fund. Available from: http://www.imf.org/external/pubs/ft/weo/2009/01/weodata/groups.htm#ae (verified 20 January 2012).Google Scholar
Ismael, Y., Bennett, R. & Morse, S. (2002). Benefits from Bt cotton use by smallholder farmers in South Africa. AgBioForum: The Journal of Agrobiotechnology Management and Economics 5, 15.Google Scholar
James, C. (2011). Global Status of Commercialized Biotech/GM crops: 2010. ISAAA Brief 42-2010. Ithaca, NY: ISAAA.Google Scholar
Jørs, E., Cervantes-Morant, R., Condarco-Aguilar, G., Huici, O., Lander, F., Bælum, J. & Konradsen, F. (2006). Occupational pesticide intoxications among farmers in Bolivia: a cross-sectional study. Environmental Health: A Global Access Science Source 5, 110. doi:10.1186/1476-069X-5-10.CrossRefGoogle ScholarPubMed
Kambhampati, U., Morse, S., Bennett, R. & Ismael, Y. (2006). Farm-level performance of genetically modified cotton: a frontier analysis of cotton production in Maharashtra. Outlook on Agriculture 35, 291297.CrossRefGoogle Scholar
Klotz-Ingram, C., Jans, S., Fernandez-Cornejo, J. & McBride, W. (1999). Farm-level production effects related to the adoption of genetically modified cotton for pest management. AgBioForum: The Journal of Agrobiotechnology Management and Economics 2, 7384.Google Scholar
Koop, G. (2003). Bayesian Econometrics. Chichester, West Sussex: John Wiley & Sons Inc.Google Scholar
Magaña, J. E. M., García, J. G., Rodríguez, A. J. O. & García, J. M. O. (1999). Comparative analysis of producing transgenic cotton varieties versus no transgenic variety in Delicias, Chihuahua, Mexico. In Proceedings of the Beltwide Cotton Conferences 1 (Eds Dugger, P. & Richter, D.), pp. 255256. Memphis, TN: National Cotton Council of America.Google Scholar
Ministry of Agriculture of the Czech Republic (2009). Experience with Bt maize cultivation in the Czech Republic 2005–2009. Prague: Ministry of Agriculture of the Czech Republic.Google Scholar
Morse, S., Bennett, R. & Ismael, Y. (2006). Environmental impact of genetically modified cotton in South Africa. Agriculture, Ecosystems and Environment 117, 277289.CrossRefGoogle Scholar
Naik, G., Qaim, M., Subramanian, A. & Zilberman, D. (2005). Bt cotton controversy. Some paradoxes explained. Economic and Political Weekly 40, 15141517.Google Scholar
Pemsl, D., Waibel, H. & Orphal, J. (2004). A methodology to assess the profitability of Bt cotton: case study results from the state of Karnataka, India. Crop Protection 23, 12491257.CrossRefGoogle Scholar
Pinstrup-Andersen, P. & Cohen, M. J. (1999). Food security in the 21st century and the role of biotechnology. Foresight 1, 399412.CrossRefGoogle Scholar
Pitoro, R., Walker, T., Tschirley, D., Swinton, S., Boughton, D. & De Marrule, H. (2009). Prospects for Bt Cotton in Mozambique. Research Report Series No. 5E. Maputo, República de Moçambique: Institute of Agricultural Research of Mozambique. Available from: http://www.aec.msu.edu/fs2/mozambique/iiam/rr_5e.pdf (verified 20 January 2012).Google Scholar
Pray, C. E., Huang, J., Hu, R. & Rozelle, S. (2002). Five years of Bt cotton in China – the benefits continue. Plant Journal 31, 423430.CrossRefGoogle Scholar
Pray, C. E., Ma, D., Huang, J. & Qiao, F. (2001). Impact of Bt cotton in China. World Development 29, 813825.CrossRefGoogle Scholar
Pretty, J. N., Morison, J. I. L. & Hine, R. E. (2003). Reducing food poverty by increasing agricultural sustainability in developing countries. Agriculture, Ecosystems and Environment 95, 217234.CrossRefGoogle Scholar
Qaim, M. (2003). Bt cotton in India: field trial results and economic projections. World Development 31, 21152127.CrossRefGoogle Scholar
Qaim, M. (2009). The economics of genetically modified crops. Annual Review of Resource Economics 1, 665694.CrossRefGoogle Scholar
Qaim, M. & De Janvry, A. (2003). Genetically modified crops, corporate pricing strategies and farmer's adoption: the case of Bt cotton in Argentina. American Journal of Agricultural Economics 85, 814828.CrossRefGoogle Scholar
Qaim, M. & Traxler, G. (2005). Roundup Ready soybean in Argentina: farm level and aggregate welfare effects. Agricultural Economics 32, 7386.CrossRefGoogle Scholar
Qaim, M., Subramanian, A., Naik, G. & Zilberman, D. (2006). Adoption of Bt cotton and impact variability: insights from India. Review of Agricultural Economics 28, 4858.CrossRefGoogle Scholar
Qayum, A. & Sakkhari, K. (2006). Bt Cotton in Andhra Pradesh. A Three-Year Assessment. Andhra Pradesh, India: Deccan Development Society.Google Scholar
Ramasundaram, P., Vennila, S. & Ingle, R. K. (2007). Bt cotton performance and constraints in central India. Outlook on Agriculture 36, 175180.CrossRefGoogle Scholar
Rao, N. C. & Dev, S. M. (2009). Socio-economic impact of transgenic cotton. Agricultural Economics Research Review 22, 461470.Google Scholar
Sadashivappa, P. & Qaim, M. (2009). Bt cotton in India: developments of benefits and the role of government seed price interventions. AgBioForum: The Journal of Agrobiotechnology Management and Economics 12, 172183.Google Scholar
Sahai, S. & Rahman, S. (2003). Performance of Bt cotton: data from first commercial crop. Economic and Political Weekly 38, 31393141.Google Scholar
Sahai, S. & Rahman, S. (2004). Bt cotton performance 2003–2004: fields swamped with illegal variants. Economic and Political Weekly 39, 26732674.Google Scholar
Shankar, B., Bennett, R. & Morse, S. (2008). Production risk, pesticide use and GM crop technology in South Africa. Applied Economics 40, 24892500.CrossRefGoogle Scholar
State Department of Agriculture, India (2003). Performance Report of Bt Cotton in Andhra Pradesh. Hyderabad, Andhra Pradesh, India: State Department of Agriculture, India.Google Scholar
Subramanian, A. & Qaim, M. (2009). Village-wide effects of agricultural biotechnology: the case of Bt cotton in India. World Development 37, 256267.CrossRefGoogle Scholar
Tabachnik, B. G. & Fidell, L. S. (1996). Using Multivariate Statistics, 3rd edn. NY: Harper Collins.Google Scholar
Thirtle, C., Beyers, L., Ismael, Y. & Piesse, J. (2003). Can GM-technologies help the poor? The impact of Bt cotton in Makhathini Flats, KwaZulu-Natal. World Development 31, 717732.CrossRefGoogle Scholar
Traxler, G. & Godoy-Avila, S. (2004). Transgenic cotton in Mexico. AgBioForum: The Journal of Agrobiotechnology Management and Economics 7, 5762.Google Scholar
Whitehead, A. (2002). Meta-analysis of Controlled Clinical Trials. NY: Wiley.CrossRefGoogle Scholar
Wossink, A. & Denaux, Z. S. (2006). Environmental and cost efficiency of pesticide use in transgenic and conventional cotton production. Agricultural Systems 90, 312328.CrossRefGoogle Scholar
Xu, J., You, Z., Wang, W. & Yang, Y. (2004). Economic analysis of BT cotton planting in Jiangsu. Journal of Yangzhou University (Agricultural and Life Science Edition) 25, 6569.Google Scholar
Yorobe, J. M. & Quicoy, C. B. (2006). Economic impact of Bt corn in the Philippines. Philippine Agricultural Scientist 89, 258267.Google Scholar