Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T13:58:03.872Z Has data issue: false hasContentIssue false

Early effects of slash-and-burn cultivation on soil physicochemical properties of small-scale farms in the Tapajós region, Brazilian Amazon

Published online by Cambridge University Press:  28 January 2014

A. BÉLIVEAU*
Affiliation:
Institut des sciences de l'environnement, Université du Québec à Montréal, GEOTOP-UQAM, CP 8888, Succ. Centre-Ville, Montréal, Qc H3C 3P8, Canada Institut des sciences de l'environnement, UQAM, CP 8888, Succ. Centre-Ville, Montréal, Qc H3C 3P8, Canada
R. DAVIDSON
Affiliation:
Institut des sciences de l'environnement, UQAM, CP 8888, Succ. Centre-Ville, Montréal, Qc H3C 3P8, Canada Biodôme de Montréal, 4777 Pierre-De Coubertin, Montréal, Qc H1V 1B3, Canada
M. LUCOTTE
Affiliation:
Institut des sciences de l'environnement, Université du Québec à Montréal, GEOTOP-UQAM, CP 8888, Succ. Centre-Ville, Montréal, Qc H3C 3P8, Canada Institut des sciences de l'environnement, UQAM, CP 8888, Succ. Centre-Ville, Montréal, Qc H3C 3P8, Canada
L. OTÁVIO DO CANTO LOPES
Affiliation:
Núcleo de Meio Ambiente da Universidade Federal do Pará (NUMA/UFPA), Rua Augusto Corrêa 01, Guamá, CEP 66075-110, Belém, PA, Brasil
S. PAQUET
Affiliation:
Institut des sciences de l'environnement, Université du Québec à Montréal, GEOTOP-UQAM, CP 8888, Succ. Centre-Ville, Montréal, Qc H3C 3P8, Canada
C. VASSEUR
Affiliation:
Biodôme de Montréal, 4777 Pierre-De Coubertin, Montréal, Qc H1V 1B3, Canada
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Increasing human occupation of the Brazilian Amazon has led to the intensification of deforestation over the last 50 years. The present study is aimed at analysing the impacts of the first year of slash-and-burn cultivation on soil physicochemical properties. Sampling was done in 26 small-scale farms of the Tapajós River basin. In August 2004, soil samples were collected from primary forest plots planned for slash-and-burn cultivation. In September 2005, 1 year after the initial burning and the beginning of cultivation, the same sites were re-sampled. The results indicated that soil fertility after burning was relatively moderate, as the increase of base cations was not particularly marked. Moreover, although an increase of some nutrients (such as exchangeable phosphorus) was observed at soil surface, total carbon and nitrogen (N) pools did not change significantly. Nutrient leaching was also detected through the accumulation of both forms of available nitrogen (NO3 and NH4) as well as potassium in subsoil horizons. In addition, signs of erosion were seen, as a significant increase surface density occurred, coupled with up to 25% fine particle loss at the surface. The present study draws attention to the early impacts of slash-and-burn agriculture on soil properties within a year of cultivation. Furthermore, its regional dimension highlights undisturbed soils natural variability as well as differentiated responses to deforestation according to soil texture.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfaia, S. S., Ribeiro, G. A., Nobre, A. D., Luizão, R. C. & Luizão, F. J. (2004). Evaluation of soil fertility in smallholder agroforestry systems and pastures in western Amazônia. Agriculture, Ecosystems and Environment 102, 409414.Google Scholar
Asner, G. P., Townsend, A. R., Bustamante, M. M. C., Nardoto, G. B. & Olander, L. P. (2004). Pasture degradation in the central Amazon: linking changes in carbon and nutrient cycling with remote sensing. Global Change Biology 10, 844862.Google Scholar
Béliveau, A., Lucotte, M., Davidson, R., do Canto Lopes, L. O. & Paquet, S. (2009). Early Hg mobility in cultivated tropical soils one year after slash-and-burn of the primary forest, in the Brazilian Amazon. Science of the Total Environment 407, 44804489.CrossRefGoogle ScholarPubMed
Brady, N. C. & Weil, R. R. (2002). The Nature and Properties of Soils, 13th edn. Upper Saddle River, USA: Pearson Education, Inc.Google Scholar
Brown, S., Anderson, J. M., Woomer, P. L., Swift, M. J. & Barrios, E. (1994). Soil biological processes in tropical ecosystems. In The Biological Management of Tropical Soil Fertility (Eds Woomer, P. L. & Swift, M. J.), pp. 1546. New York: Wiley & Sons Ltd.Google Scholar
Cochrane, M. A. (2003). Fire science for rainforests. Nature 421, 913919.Google Scholar
Cochrane, M. A., Alencar, A., Schulze, M. D., Souza, C. M. Jr, Nepstad, D. C., Lefebvre, P. & Davidson, E. A. (1999). Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284, 18321835.Google Scholar
Cochrane, T. T. & Sánchez, P. A. (1982). Land resources, soils and their management in the Amazon region: a state of knowledge report. In Amazonia, Agriculture and Land Use Research. Proceedings of the International Conference on Amazonian Agriculture and Land Use Research (Ed. Hecht, S. B.), pp. 137209. CIAT series 03E-3(82). Cali, Colombia: CIAT.Google Scholar
De Mello, N. A. & Théry, H. (2003). L'État brésilien et l'environnement en Amazonie : évolutions, contradictions et conflits. L'Espace Géographique 1, 320.Google Scholar
De Sartre, X. A., Albaladejo, C., Martins, P., Veiga, I. & Grimaldi, M. (2005). Identification et évaluation de la diversité des modes d'exploitation des milieux en Amazonie orientale. Cahiers Agricultures 14, 8589.Google Scholar
Demaze, M. T. (2008). Quand le développement prime sur l'environnement: la déforestation en Amazonie brésilienne. Mondes en Développement 143, 97116.CrossRefGoogle Scholar
Desjardins, T., Lavelle, P., Barros, E., Brossard, M., Chapuis-Lardy, L., Chauvel, A., Grimaldi, M., Guimarães, F., Martins, P., Mitja, D., Müller, M., Sarrazin, M., Tavares Filho, J. & Topall, O. (2000). Dégradation des pâturages amazoniens. Étude et Gestion des Sols 7, 353378.Google Scholar
Embrapa Amazônia Oriental (2007 a). Uso da Terra e Vegetação. Documento no 20. Zoneamento ecológico-econômico da área de influencia da rodovia BR-163 (Cuiabá-Santarém). Brasilia, Brazil: EMBRAPA. Available from: http://zeebr163.cpatu.embrapa.br/index.php (accessed September 2009).Google Scholar
Embrapa Amazônia Oriental (2007 b). Mapa de Uso da Terra. Sub-região Baixo e médio Tapajós Rodovia BR-163 (Cuiabá-Santarém). Documento no 285. Zoneamento ecológico-econômico da área de influencia da rodovia BR-163 (Cuiabá-Santarém). Brasilia, Brazil: EMBRAPA. Available from: http://zeebr163.cpatu.embrapa.br/index.php (accessed September 2009).Google Scholar
Embrapa Amazônia Oriental (2007 c). Solos. Área de Influencia da Rodovia BR-163 (Cuiabá-Santarém). Documento no 332. Zoneamento ecológico-econômico da área de influencia da rodovia BR-163 (Cuiabá-Santarém). Brasilia, Brazil: EMBRAPA. Available from: http://zeebr163.cpatu.embrapa.br/index.php (accessed September 2009).Google Scholar
Fabian, P., Kohlpaintner, M. & Rollenbeck, R. (2005). Biomass burning in the Amazon-fertilizer for the mountaineous rain forest in Ecuador. Environmental Science and Pollution Research 12, 290296.Google Scholar
Farella, N. (2005). Les fermes des régions frontières d'Amazonie brésilienne: relations entre les origines familiales, les pratiques agricoles, les impacts sur les sols et le déboisement. Ph.D. Thesis in Environmental Sciences, University of Québec in Montréal, Montréal, Canada.Google Scholar
Farella, N., Lucotte, M., Louchouarn, P. & Roulet, M. (2001). Deforestation modifying terrestrial organic transport in the Rio Tapajós, Brazilian Amazon. Organic Geochemistry 32, 14431458.CrossRefGoogle Scholar
Farella, N., Lucotte, M., Davidson, R. & Daigle, S. (2006). Mercury release from deforested soils triggered by base cation enrichment. Science of the Total Environment 368, 1929.CrossRefGoogle ScholarPubMed
Farella, N., Davidson, R., Lucotte, M. & Daigle, S. (2007). Nutrient and mercury variations in soils from family farms of the Tapajós region (Brazilian Amazon): recommendations for better farming. Agriculture, Ecosystems and Environment 120, 449462.Google Scholar
Fearnside, P. M. (1999). Biodiversity as an environmental service in Brazil's Amazonian forests: risks, value and conservation. Environmental Conservation 26, 305321.Google Scholar
Fearnside, P. M. (2003). Conservation policy in Brazilian Amazonia: understanding the dilemmas. World Development 31, 757779.Google Scholar
Filoso, S., Martinelli, L. A., Howarth, R. W., Boyer, E. W. & Dentener, F. (2006). Human activities changing the nitrogen cycle in Brazil. Biogeochemistry 79, 6189.Google Scholar
Fitzjarrald, D. R., Sakai, R. K., Moraes, O. L. L., Cosme de Oliveira, R., Acevedo, O. C., Czikowsky, M. J. & Beldini, T. (2008). Spatial and temporal rainfall variability near the Amazon-Tapajos confluence. Journal of Geophysical Research 113, G00B11. DOI: 10.1029/2007JG000596.Google Scholar
Grupo de Trabalho Interministerial (2006). Plano Amazônia Sustentável. Versão Final para Consulta. Brasilia, Brazil: Ministério do Meio Ambiente.Google Scholar
Hendershot, W. H., Lalande, H. & Duquette, M. (1993). Ion exchange and exchangeable cations. In Soil Sampling and Methods of Analysis (Ed. Carter, M. R.), pp. 167176. Boca Raton, FL, USA: Lewis Publishers.Google Scholar
Herrera, R. (1985). Nutrient cycling in Amazonian forests. In Key Environments Amazonia (Eds Prance, G. T. & Lovejoy, T. T.), pp. 95105. Oxford: Pergamon Press.Google Scholar
Holmes, K. W., Kyriakidis, P. C., Chadwick, O. A., Soares, J. V. & Roberts, D. A. (2005). Multi-scale variability in tropical soil nutrients following land-cover change. Biogeochemistry 74, 173203.Google Scholar
Hölscher, D., Ludwig, B., Moller, R. F. & Folster, H. (1997). Dynamic of soil chemical parameters in shifting agriculture in the Eastern Amazon. Agriculture, Ecosystems and Environment 66, 153163.CrossRefGoogle Scholar
Instituto Nacional de Pesquisas Espaciais – INPE (2013). Resultado Consolidado do PRODES Mostra Redução de 29% no Desmatamento na Amazônia em 2012. São José dos Campos, Brazil: INPE. Available from: http://www.inpe.br/noticias/noticia.php?Cod_Noticia=3301 (accessed October 2013).Google Scholar
Jordan, C. F. (1985). Soils of the Amazon rainforest. In Key Environments Amazonia (Eds Prance, G. T. & Lovejoy, T. T.), pp. 8394. Oxford: Pergamon Press.Google Scholar
Juo, A. S. R. & Manu, A. (1996). Chemical dynamics in slash-and-burn agriculture. Agriculture, Ecosystems and Environment 58, 4960.Google Scholar
Klinge, K., Araujo Martins, A. R., Mackensen, J. & Fölster, H. (2004). Element loss on rain forest conversion in East Amazonia: comparison of balances of stores and fluxes. Biogeochemistry 69, 6382.CrossRefGoogle Scholar
Laurance, W. F. (2000). Mega-development trends in the Amazon: implications for global change. Environmental Monitoring and Assessment 61, 113122.Google Scholar
Le Tourneau, F. M. & Bursztyn, M. (2010). Assentamentos rurais na Amazônia: contradições entre a política agrária e a política ambiental. Ambiente e Sociedade 13, 111130.CrossRefGoogle Scholar
, Y., Fu, B., Chen, L., Liu, G. & Wei, W. (2007). Nutrient transport associated with water erosion: progress and prospect. Progress in Physical Geography 31, 607620.Google Scholar
Lucotte, M. & d'Anglejan, B. (1985). A comparison of several methods for the determination of iron hydroxides and associated orthophosphates in estuarine particulate matter. Chemical Geology 48, 257264.CrossRefGoogle Scholar
Mackensen, J., Hölscher, D., Klinge, R. & Fölster, K. (1996). Nutrient transfer to the atmosphere by burning of debris in eastern Amazonia. Forest Ecology and Management 86, 121128.CrossRefGoogle Scholar
Mainville, N., Webb, J., Lucotte, M., Davidson, R., Betancourt, O., Cueva, E. & Mergler, D. (2006). Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River valley, Ecuador. Science of the Total Environment 368, 8898.CrossRefGoogle ScholarPubMed
Malingreau, J. P., Eva, H. D. & de Miranda, E. E. (2012). Brazilian Amazon: a significant five year drop in deforestation rates but figures are on the rise again. AMBIO 41, 309314.Google Scholar
Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F. & Oyama, M. D. (2008). Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 17731778.Google Scholar
Margulis, S. (2004). Causes of Deforestation of the Brazilian Amazon. World Bank Working Paper no 22. Washington, DC: The World Bank.Google Scholar
Markewitz, D., Davidson, E., Moutinho, P. & Nepstad, D. (2004). Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecological Applications 14 (Suppl.), 177199.Google Scholar
Maynard, D. G. & Kalra, Y. P. (1993). Nitrate and exchangeable ammonium nitrogen. In Soil Sampling and Methods of Analysis (Ed. Carter, M. R.), pp. 2538. Boca Raton, FL, USA: Lewis Publishers.Google Scholar
McGrath, D. A., Smith, K. C., Gholz, H. L. & de Assis Oliveira, F. (2001). Effects of land-use change on soil nutrient dynamics in Amazônia. Ecosystems 4, 625646.CrossRefGoogle Scholar
Metzger, J. P. (2003). Effects of slash-and-burn fallow periods on landscape structure. Environmental Conservation 30, 325333.Google Scholar
Müller, M. M. L., Guimarães, M. F., Desjardins, T. & Mitja, D. (2004). The relationship between pasture degradation and soil properties in the Brazilian Amazon: a case study. Agriculture, Ecosystems and Environment 103, 279288.Google Scholar
Murty, D., Kirschbaum, M. U. F., McMurtrie, R. E. & McGilvray, H. (2002). Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology 8, 105123.Google Scholar
Neill, C., Piccolo, M. C., Cerri, C. C., Steudler, P. A. & Melillo, J. M. (2006). Soil solution nitrogen losses during clearing of lowland Amazon forest for pasture. Plant and Soil 281, 233245.CrossRefGoogle Scholar
Nepstad, D., Capobianco, J. P., Barros, A. C., Carvalho, G., Moutinho, P., Lopes, U. & Lefebvre, P. (2000). Avança Brasil: Os custos ambientais para a Amazônia, IPAM and Instituto Socioambiental. Cenários Futuros para a Amazônia. Project Report. Belém, Brasil: Gráfica e Editora Alves.Google Scholar
Nepstad, D., Carvalho, G., Barros, A. C., Alencar, A., Capobianco, J. P., Bishop, J., Moutinho, P., Lefebvre, P., Lopes Silva, U. Jr & Prins, E. (2001). Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management 154, 395407.CrossRefGoogle Scholar
Numata, I., Chadwick, O. A., Roberts, D. A., Schimel, J. P., Sampaio, F. F., Leonidas, F. C. & Soares, J. V. (2007). Temporal nutrient variation in soil and vegetation of post-forest pastures as a function of soil order, pasture age, and management, Rondônia, Brazil. Agriculture, Ecosystems and Environment 118, 159172.CrossRefGoogle Scholar
Nye, P. H. & Greenland, D. J. (1964). Changes in the soil after clearing tropical forest. Plant and Soil 21, 101112.CrossRefGoogle Scholar
Pasquis, R. & de Oliveira, L. M. (2007). La récupération des terres dégradées: un enjeu socio-environnemental prioritaire en Amazonie brésilienne. Confins 1. DOI: 10.4000/confins.751. Available from: http://confins.revues.org/751 (accessed December 2010).Google Scholar
Podwojewski, P., Janeau, J. L. & Leroux, Y. (2008). Effects of agricultural practices on the hydrodynamics of a deep tilled hardened volcanic ash–soil (Cangahua) in Ecuador. Catena 72, 179190.CrossRefGoogle Scholar
Rao, I. M., Friesen, D. K. & Osaki, M. (1999). Plant adaptation to phosphorus-limited tropical soils. In Handbook of Plant and Crop Stress (Ed. Pessarakli, M.), pp. 6195. New York: Marcel Dekker Inc.Google Scholar
Roulet, M. & Lucotte, M. (1995). Geochemistry of mercury in pristine and flooded ferralitic soils of a tropical rain forest in French Guiana, South America. Water Air and Soil Pollution 80, 10791088.Google Scholar
Roulet, M., Lucotte, M., Saint-Aubin, A., Tran, S., Rheault, I., Farella, N., de Jesus Da Silva, E., Dezencourt, J., Sousa Passos, C. J., Santos Soares, G., Guimaraes, J. R. D., Mergler, D. & Amorim, M. (1998). The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil. Science of the Total Environment 223, 124.Google Scholar
Salati, E. (1985). The climatology and hydrology of Amazonia. In Key Environments Amazonia (Eds Prance, G. T. & Lovejoy, T. T.), pp. 1848. Oxford: Pergamon Press.Google Scholar
SAS Institute (2003). JUMP, version 5.1. Computer statistical software. Cary, NC, USA: SAS Institute.Google Scholar
da Silva, G. R., da Silva, M. L. Jr & de Melo, V. S. (2006). Efeitos de diferentes usos da terra sobre as características químicas de um latossolo amarelo do estado do Pará. Acta Amazonica 36, 151157.Google Scholar
Soares-Filho, B. S., Nepstad, D. C., Curran, L. M., Coutinho Cerqueira, G., Alexandrino Garcia, R., Azevedo Ramos, C., Voll, E., McDonald, A., Lefebvre, P. & Schlesinger, P. (2006). Modelling conservation in the Amazon basin. Nature 440, 520523.Google Scholar
Soil Survey Staff (1999). Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd edn. Washington, DC: Unites States Department of Agriculture. Natural Resources Conservation Service.Google Scholar
Sommer, R., Vlek, P. L. G., , T. D. de A., Vielhauer, K., de Fátima Rodrigues Coelho, R. & Fölster, H. (2004). Nutrient balance of shifting cultivation by burning or mulching in the Eastern Amazon – evidence for subsoil nutrient accumulation. Nutrient Cycling in Agroecosystems 68, 257271.CrossRefGoogle Scholar
Valentin, C. & Janeau, J. L. (1990). Les risques de dégradation structurale de la surface des sols en savane humide (Côte d'Ivoire). Cahiers ORSTOM, Série Pédologie 25, 4152.Google Scholar
Verardo, D. J., Froelich, P. N. & McIntyre, A. (1990). Determination of organic carbon and nitrogen in marine sediments using the Carlo-Erba NA-1500 analyzer. Deep Sea Research Part A: Oceanographic Research Papers 37, 157165.CrossRefGoogle Scholar
Vielhauer, K., Denich, M., , T. D. de A., Kato, O. R., Kato, M. do S. A., Brienza, S. Jr & Vlek, P. L. G. (2001). Land-use in a mulch-based farming system of small holders in the Eastern Amazon. In Proceedings of the Deutscher Tropentag: Conference on International Agricultural Research for Development, October 9–11, 2001. Bonn, Germany. Weikersheim, Germany: Margraf Publishers. Available online from: ftp://ftp.gwdg.de/pub/tropentag/proceedings/2001/ (accessed 27 September 2013).Google Scholar
Wick, B., Veldkamp, E., De Mello, W. Z., Keller, M. & Crill, P. (2005). Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in Central Amazonia, Brazil. Biogeosciences 2, 175187.CrossRefGoogle Scholar