Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T06:19:23.410Z Has data issue: false hasContentIssue false

Early determination of sex in jojoba plant by CAPS assay

Published online by Cambridge University Press:  19 November 2010

A. G. INCE
Affiliation:
Department of Horticulture, Faculty of Agriculture,Akdeniz University, 07059 Antalya, Turkey
M. KARACA*
Affiliation:
Department of Field Crops, Faculty of Agriculture,Akdeniz University, 07059 Antalya, Turkey
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Jojoba [Simmondsia chinensis (Link) Schneider] is a dioecious plant grown for its seeds, which are the source of liquid wax or jojoba oil. The sex of jojoba plants cannot be determined with morphological characters until the plants reach reproductive maturity at 3 or more years old. This difficulty of early sex determination imposes severe constraints in breeding studies and in the sex allocation of seedlings in seed orchard establishment, and importantly in a priori mating designs to produce superior jojoba individuals. This study reports three new cleavage-amplified polymorphic sequence (CAPS) assays, which identify male and female individuals distinctly. One of the assays could also identify hermaphrodite jojoba plants existing in nature or obtained using mutagenesis studies.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, V., Sharma, K., Gupta, S., Kumar, R. & Prasad, M. (2007). Identification of sex in Simmondsia chinensis (Jojoba) using RAPD markers. Plant Biotechnology Reports 1, 207210.CrossRefGoogle Scholar
Alstrom-Rapaport, C., Lascoux, M., Wang, Y. C., Roberts, G. & Tuskan, G. A. (1998). Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L.). Journal of Heredity 89, 4449.CrossRefGoogle Scholar
Benzioni, A. & Dunstone, R. L. (1986). Jojoba: adaptation to environmental stress and the implications for domestication. The Quarterly Review of Biology 61, 177199.CrossRefGoogle Scholar
Benzioni, A., Mills, D., Van Boven, M. & Cokelaere, M. (2005). Effect of genotype and environment on the concentration of simmondsin and its derivatives in jojoba seeds and foliage. Industrial Crops and Products 21, 241249.CrossRefGoogle Scholar
Benzioni, A. & Vaknin, Y. (2002). Effect of female and male genotypes and environment on wax composition in jojoba. Journal of the American Oil Chemists’ Society 79, 297302.CrossRefGoogle Scholar
Benzioni, A. & Ventura, M. (1998). Effect of the distance between female and male jojoba plants on fruit set. Industrial Crops and Products 8, 145149.CrossRefGoogle Scholar
Borges, R. M. (1998). Gender in plants: why do plants change sex? Resonance 3, 6471.CrossRefGoogle Scholar
Buchmann, S. L. (1987). Floral biology of jojoba (Simmondsia chinensis), an anemophilous plant. Desert Plants 8, 111124.Google Scholar
Chaves-Bedoya, G. & Nunenz, V. (2007). A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphytica 153, 215220.CrossRefGoogle Scholar
Cisneros-Lopez, M. E., Mendoza-Onofre, L. E., Zavaleta-Mancera, H. A., Gonzalez-Hernandez, V. A., Mora-Aguilera, G., Cordova-Tellez, L. & Hernandez-Martinez, M. (2010). Pollen–pistil interaction, pistil histology and seed production in A×B grain sorghum crosses under chilling field temperatures. Journal of Agricultural Science, Cambridge 148, 7382.CrossRefGoogle Scholar
Coates, W. & Ayerza, R. (2008). Supplemental pollination-increasing jojoba [Simmondsia chinensis L. (Schneider)] seed yields in the Arid Chaco environment. Industrial Crops and Products 27, 364370.CrossRefGoogle Scholar
Coates, W., Ayerza, R. & Palzkill, D. (2006). Supplemental pollination of jojoba – a means to increase yields. Industrial Crops and Products 24, 4145.CrossRefGoogle Scholar
Collin, C. L. & Shykoff, J. A. (2003). Outcrossing rates in the gynomonoecious-gynodioecious species Dianthus sylvestris (Caryophyllaceae). American Journal of Botany 90, 579585.CrossRefGoogle ScholarPubMed
Culley, T. M. & Wolfe, A. D. (2000). Population genetic structure of the cleistogamous plant species Viola pubescens Aiton (Violaceae), as indicated by allozyme and ISSR molecular markers. Heredity 86, 545556.CrossRefGoogle Scholar
Danilova, T. V. & Karlov, G. I. (2006). Application of inter simple sequence repeat (ISSR) polymorphism for detection of sex-specific molecular markers in hop (Humulus lupulus L.). Euphytica 151, 1521.CrossRefGoogle Scholar
Deputy, J. C., Ming, R., Ma, H., Liu, Z., Fitch, M. M., Wang, M., Manshardt, R. & Stiles, J. I. (2002). Molecular markers for sex determination in papaya (Carica papaya L.). Theoretical and Applied Genetics 106, 107111.CrossRefGoogle ScholarPubMed
Dunstone, R. L., Benzioni, A., Tonnet, M. L., Milthorpe, P. & Shani, A. (1985). Effect of temperature on the synthesis of jojoba wax. Australian Journal of Plant Physiology 12, 355362.Google Scholar
Gangopadhyay, G., Roy, S. K., Ghose, K., Poddar, R., Bandyopadhyay, T., Basu, D. & Mukherjee, K. K. (2007). Sex detection of Carica papaya and Cycas circinalis in pre-flowering stage by ISSR and RAPD. Current Science 92, 524526.Google Scholar
Gentry, H. S. (1958). The natural history of Jojoba, Simmondsia chinensis and its culture aspects. Economic Botany 12, 261295.CrossRefGoogle Scholar
Hamadina, E. I., Craufurd, P. Q. & Asiedu, R. (2009). Flowering intensity in white yam (Dioscorea rotundata). Journal of Agricultural Science, Cambridge 147, 469477.CrossRefGoogle Scholar
Harsh, L. N., Tiwari, J. C., Patwal, D. S. & Meena, G. L. (1987). Package and Practice for Cultivation of Jojoba Simmondsia chinensis in Arid Zone. Jodhpur, India: Central Arid Zone Research Institute.Google Scholar
Ince, A. G., Karaca, M. & Onus, A. N. (2010 a). A reliable gender diagnostic PCR assay for Jojoba [Simmondsia chinensis (Link) Schneider]. Genetic Resources and Crop Evolution 57, 773779.CrossRefGoogle Scholar
Ince, A. G., Karaca, M. & Onus, A. N. (2010 b). CAPS-microsatellites: use of CAPS method to convert non-polymorphic microsatellites into useful markers. Molecular Breeding 25, 491499.CrossRefGoogle Scholar
Jhang, T., Kaur, M., Kalia, P. & Sharma, T. R. (2010). Efficiency of different marker systems for molecular characterization of subtropical carrot germplasm. The Journal of Agricultural Science, Cambridge 148, 171181.CrossRefGoogle Scholar
Jiang, L., You, R. L., Li, M. X. & Shi, C. (2003). Identification of a sex associated RAPD marker in Ginkgo biloba. Acta Botanica Sinica 45, 742747.Google Scholar
Kafkas, S., Cetiner, S. & Perl-Treves, R. (2001). Development of sex-associated RAPD markers in wild Pistacia species. Journal of Horticultural Science and Biotechnology 76, 242246.CrossRefGoogle Scholar
Karaca, M. & Ince, A. G. (2008). Minisatellites as DNA markers to classify bermudagrasses (Cynodon spp.): confirmation of minisatellite in amplified products. Journal of Genetics 87, 8386.CrossRefGoogle ScholarPubMed
Karaca, M., Ince, A. G., Elmasulu, S. Y., Onus, A. N. & Turgut, K. (2005). Coisolation of genomic and organelle DNAs from 15 genera and 31 species of plants. Analytical Biochemistry 343, 353356.CrossRefGoogle ScholarPubMed
Karaca, M., Saha, S., Callahan, F. E., Jenkins, J. N., Read, J. J. & Percy, R. G. (2004). Molecular and cytological characterization of a cytoplasmic-specific mutant in pima cotton (Gossypium barbadense L.). Euphytica 139, 187197.CrossRefGoogle Scholar
Khadka, D. K., Nejidat, A., Tal, M. & Golan-Goldhirsh, A. (2002). DNA markers for sex: molecular evidence for gender dimorphism in dioecious Mercurialis annua L. Molecular Breeding 9, 251257.CrossRefGoogle Scholar
Kohorn, L. U. (1994). Shoot morphology and reproduction in jojoba: advantages of sexual dimorphism. Ecology 75, 23842394.CrossRefGoogle Scholar
Kumar, P. P. & Arumuganathan, K. (1997). Estimation of nuclear DNA content of various bamboo and rattan species. In Bamboo and Rattan Genetic Resources and Use (Eds Rao, A. N. & Rao, V. R.), pp. 195203. Serdang, Malaysia: International Plant Genetic Resources Institute.Google Scholar
Li, M., Yang, H., Li, F., Yang, F., Yin, G. & Gan, S. (2010). A male-specific SCAR marker in Calamus simplicifolius, a dioecious rattan species endemic to China. Molecular Breeding 25, 549551.CrossRefGoogle Scholar
Martin, A., Troadec, C., Boualem, A., Rajab, M., Fernandez, R., Morin, H., Pitrat, M., Dogimont, C. & Bendahmane, A. (2009). A transposon-induced epigenetic change leads to sex determination in melon. Nature 461, 11351138.CrossRefGoogle ScholarPubMed
McGowan, G. M., Joensalo, J. & Naylor, R. E. L. (2004). Differential grazing of female and male plants of prostrate juniper (Juniperus communis L.). Botanical Journal of Scotland 56, 3954.CrossRefGoogle Scholar
Ordas, B., Serrano, L., Ordas, A., Butron, A. & Revilla, P. (2009). Transition between vegetative phases in maize: genetic effects and variances and associated markers. The Journal of Agricultural Science, Cambridge 147, 547554.CrossRefGoogle Scholar
Prakash, S. & Van Staden, J. (2006). Sex identification in Encephalartos natalensis (Dyer and Verdoorn) using RAPD markers. Euphytica 152, 197200.CrossRefGoogle Scholar
Rozen, S. & Skaletsky, H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology (Eds Krawetz, S. & Misener, S.), pp. 365386. Totowa, NJ: Humana Press.Google Scholar
Ruas, C. F., Fairbanks, D. J., Evans, R. P., Stutz, H. C., Andersen, W. R. & Ruas, P. M. (1998). Male-specific DNA in the dioecious species Atriplex garrettii (Chenopodiaceae). American Journal of Botany 85, 62167.CrossRefGoogle ScholarPubMed
Sharma, K., Agrawal, V., Gupta, S., Kumar, R. & Prasad, M. (2008). ISSR marker-assisted selection of male and female plants in a promising dioecious crop: jojoba (Simmondsia chinensis). Plant Biotechnology Reports 2, 239243.CrossRefGoogle Scholar
Shibu, M. P., Ravishankar, K. V., Anand, L., Shaanker, U. & Ganeshaiah, K. N. (2000). Identification of sex-specific DNA markers in the dioecious tree, nutmeg (Myristica fragrans Houtt.). PGR Newsletter 121, 5961.Google Scholar
Tan, H., Callahan, F. E., Zhang, X. D., Karaca, M., Saha, S., Jenkins, J. N., Creech, R. G. & Ma, D. P. (2003). Identification of resistance gene analogs in cotton (Gossypium hirsutum L.). Euphytica 134, 17.CrossRefGoogle Scholar
Tobares, L., Frati, M., Guzman, C. & Maestri, D. (2004). Agronomical and chemical traits as descriptors for discrimination and selection of jojoba (Simmondsia chinensis) clones. Industrial Crops and Products 19, 107111.CrossRefGoogle Scholar
Torjek, O., Bucherna, N., Kiss, E., Homoki, H., Finta-Korpelova, Z., Bocsa, I., Nagy, I. & Heszky, L. E. (2002). Novel male-specific molecular markers (MADC5, MADC6) in hemp. Euphytica 127, 209218.CrossRefGoogle Scholar
Urasaki, N., Tokumoto, M., Tarora, K., Ban, Y., Kayano, T., Tanaka, H., Oku, H., Chinen, I. & Terauchi, R. (2002). A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theoretical and Applied Genetics 104, 281285.CrossRefGoogle Scholar
Vaknin, Y., Mills, D. & Benzioni, A. (2003). Pollen production and pollen viability in male jojoba plants. Industrial Crops and Products 18, 117123.CrossRefGoogle Scholar
Wisniak, J. (1987). The Chemistry and Technology of Jojoba Oil. Champaign, IL: American Oil Chemists’ Society.Google Scholar
Xu, W. J., Wang, B. W. & Cui, K. M. (2004). RAPD and SCAR markers linked to sex determination in Eucommia ulmoides Oliv. Euphytica 136, 233238.CrossRefGoogle Scholar
Yermenos, D. M. (1979). Jojoba: a crop whose time has come. California Agriculture 1, 411.Google Scholar