Published online by Cambridge University Press: 27 March 2009
A dynamic model was derived to predict crop response to nitrogen fertilizer under different soil and weather conditions. It combined formulae representing existing principles about important processes such as leaching of nitrate through soil and nitrate uptake by plant roots. Starting values were given for the initial plant weight and its nitrogen content and parameters were included for the crop's growth and rooting characteristics under optimum growing conditions. For each day the model re-calculated the distribution of water, nitrate and roots down the soil profile and the increment of growth.
The validity of the model was tested by using it to forecast the effects of different weather conditions and cultural practices on the nitrogen responses of a test crop, lettuce, when grown in experiments that were entirely independent of those used to obtain parameter values for the model. It successfully predicted the effects on the general shape of the response curve of the distribution of rainfall during the growing season, the age of the plant, the depth of fertilizer incorporation and the application of the nitrogen partly as a top dressing instead of entirely as a base dressing.
The model was used to develop a strategy for nitrogen fertilizer practice for lettuce in the U.K. which was found to be broadly in agreement with the results of fertilizer experiments on grower's holdings.