Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T10:09:36.611Z Has data issue: false hasContentIssue false

Distribution and analysis of the mechanisms of resistance of barnyardgrass (Echinochloa crus-galli) to imidazolinone and quinclorac herbicides

Published online by Cambridge University Press:  05 August 2014

F. O. MATZENBACHER
Affiliation:
Graduate Group in Plant Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
E. D. BORTOLY
Affiliation:
Graduate Group in Plant Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
A. KALSING
Affiliation:
Institute Riograndense of Rice, IRGA, Agriculture Sector, Cachoeirinha, RS, Brazil
A. MEROTTO Jr*
Affiliation:
Graduate Group in Plant Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The lack of control of barnyardgrass in flooded rice cultivated with imidazolinone-resistant rice cultivars is challenging the utilization of this system, which is continuously expanding for new rice areas worldwide. The objectives of the present study were to evaluate the frequency, distribution and mechanisms of imidazolinone resistance in barnyardgrass to establish the best practices to control and prevent this problem. The distribution of resistance was evaluated in 624 populations collected in Southern Brazil. The frequency of imidazolinone-herbicide resistance was 0·81, broadly distributed in all sampled regions. Resistance to quinclorac was also found in 0·19 of the populations, but all of the evaluated populations were susceptible to cyhalofop-butyl. Further studies were conducted in six populations. The enhanced metabolism was assessed with the metabolic inhibitors that reversed the resistance to quinclorac from 0·54 to 1·00 in two populations and the resistance to imazethapyr from 0·15 to 0·41 in three populations. The acetolactase synthase (ALS) enzyme activity also indicated the occurrence of altered target site resistance in two populations caused by the ALS gene mutations Trp574Leu and Ser653Asn, which is a novel finding in this species. The herbicide resistance in barnyardgrass in Southern Brazil presented a complex basis of resistance because it is associated with resistance to multiple herbicides due to multiple mechanisms and with multiple mutations of the ALS gene. This indicates that it is necessary to adopt specific measures to prevent and control the evolution of multiple herbicide resistance in this species.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alarcón-Reverte, R., García, A., Urzúa, J. & Fischer, A. J. (2013). Resistance to glyphosate in junglerice (Echinochloa colona) from California. Weed Science 61, 4854.CrossRefGoogle Scholar
Brown, W. V. (1948). A cytological study in the Gramineae. American Journal of Botany 35, 382395.CrossRefGoogle Scholar
Concenço, G., Melo, P. T. B. S., Andres, A., Ferreira, E. A., Galon, L., Ferreira, F. A. & Silva, A. A. (2008). Método rápido para detecção de resistência de capim-arroz (Echinochloa spp.) ao quinclorac. Planta Daninha 26, 429437.CrossRefGoogle Scholar
Damalas, C. A., Dhima, K. V. & Eleftherohorinos, I. G. (2008). Morphological and physiological variation among species of the genus Echinochloa in northern Greece. Weed Science 56, 416423.CrossRefGoogle Scholar
Doyle, J. J. & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 1115.Google Scholar
Gerwick, B. C., Mireles, L. C. & Eilers, R. J. (1993). Rapid diagnosis of ALS AHAS-resistant weeds. Weed Technology 7, 519524.CrossRefGoogle Scholar
Goulart, I. C. G. R., Pacheco, M. T., Nunes, A. L. & Merotto, A. Jr (2012). Identification of origin and analysis of population structure of field-selected imidazolinone-herbicide resistant red rice (Oryza sativa). Euphytica 187, 437447.CrossRefGoogle Scholar
Harden, J., Carlson, D., Mankin, L., Luzzi, B., Stevenson-Paulik, J., Guice, J. B., Youmans, C., Hong, H., Castro, H., Sandhu, R., Hofelt, C., McKean, A., Scott, M. & More, D. (2014). Provisia™: a new vision in red rice control. In Proceedings of the 54th Annual Meeting of the Weed Science Society of America/67th Annual meeting of the Canadian Weed Science Society. Vancouver, British Columbia: WSSA/CWSS.Google Scholar
Heap, I. (2014). International Survey of Herbicide Resistant Weeds. Available from: http://www.weedscience.org/Mutations/MutationDisplayAll.aspx (accessed 23 March 2014).Google Scholar
Hidayat, I. & Preston, C. (2001). Cross-resistance to imazethapyr in a fluazifop-P-butyl-resistant population of Digitaria sanguinalis. Pesticide Biochemistry and Physiology 71, 190195.CrossRefGoogle Scholar
Iwakami, S., Uchino, A., Watanabe, H., Yamasue, Y. & Inamura, T. (2012). Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species. Pest Management Science 68, 10981106.CrossRefGoogle ScholarPubMed
Jafun, F. B., Perryman, S. A. M. & Moss, S. R. (2003). The response of Echinochloa colona populations from Nigeria to oxadiazon, propanil and pendimethalin. In BCPC International Congress: Crop Science and Technology, Volumes 1 and 2. Proceedings of an international congress held at the SECC, Glasgow, Scotland, UK, 10–12 November 2003, pp. 807812. Glasgow, UK: British Crop Production Council.Google Scholar
Kaloumenos, N. S., Chatzilazaridou, S. L., Mylona, P. V., Polidoros, A. N. & Eleftherohorinos, I. G. (2013). Target-site mutation associated with cross-resistance to ALS-inhibiting herbicides in late watergrass (Echinochloa oryzicola Vasing). Pest Management Science 69, 865873.CrossRefGoogle ScholarPubMed
Kaspar, M., Grondona, M., Leon, A. & Zambelli, A. (2011). Selection of a sunflower line with multiple herbicide tolerance that is reversed by the P450 inhibitor malathion. Weed Science 59, 232237.CrossRefGoogle Scholar
Knezevic, S. Z., Streibig, J. C. & Ritz, C. (2007). Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technology 21, 840848.CrossRefGoogle Scholar
Lamego, F. P., Charlson, D., Delatorre, C. A., Burgos, N. R. & Vidal, R. A. (2009). Molecular basis of resistance to ALS-inhibitor herbicides in greater beggarticks. Weed Science 57, 474481.CrossRefGoogle Scholar
Letouzé, A. & Gasquez, J. (2001). Inheritance of fenoxaprop-P-ethyl resistance in a blackgrass (Alopecurus myosuroides Huds.) population. Theoretical and Applied Genetics 103, 288296.CrossRefGoogle Scholar
Lopez-Martinez, N., Marshall, G. & De Prado, R. (1997). Resistance of barnyardgrass (Echinochloa crus-galli) to atrazine and quinclorac. Pesticide Science 51, 171175.3.0.CO;2-7>CrossRefGoogle Scholar
Matzenbacher, F. O., Kalsing, A., Menezes, V. G., Barcelos, J. A. N. & Merotto, A. Jr (2013). Rapid diagnosis of resistance to imidazolinone herbicides in barnyardgrass (Echinochloa crus-galli) and control of resistant biotypes with alternative herbicides. Planta Daninha 31, 645656.CrossRefGoogle Scholar
Meier, U. (1997). Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph. Berlin: Blackwell Wissenschafts-Verlag.Google Scholar
Merotto, A. Jr, Kupas, V., Nunes, A. L. & Costa, R. F. (2009). Resistência de capim-arroz (Echinochloa crussgalli) aos herbicidas inibidores da enzima ALS. In Proceedings of the VI Congresso Brasileiro de Arroz Irrigado, 11–14 August 2009 (Eds SOSBAI/IRGA). Porto Alegre, RS, Brazil: SOSBAI/IRGA.Google Scholar
Merotto, A. Jr, Jasieniuk, M. & Fischer, A. J. (2010). Distribution and cross-resistance patterns of ALS-inhibiting herbicide resistance in smallflower umbrella sedge (Cyperus difformis). Weed Science 58, 2229.CrossRefGoogle Scholar
Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, Cambridge 144, 3143.CrossRefGoogle Scholar
Osuna, M. D., Vidotto, F., Fischer, A. J., Bayer, D. E., De Prado, R. & Ferrero, A. (2002). Cross-resistance to bispyribac-sodium and bensulfuron-methyl in Echinochloa phyllopogon and Cyperus difformis. Pesticide Biochemistry and Physiology 73, 917.CrossRefGoogle Scholar
Panozzo, S., Scarabel, L., Tranel, P. J. & Sattin, M. (2013). Target-site resistance to ALS inhibitors in the polyploid species Echinochloa crus-galli. Pesticide Biochemistry and Physiology 105, 93101.CrossRefGoogle Scholar
Patzoldt, W. L. & Tranel, P. J. (2007). Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Science 55, 421428.CrossRefGoogle Scholar
Riar, D. S., Norsworthy, J. K., Bond, J. A., Bararpour, M. T., Wilson, M. J. & Scott, R. C. (2012). Resistance of Echinochloa crus-galli populations to acetolactate synthase-inhibiting herbicides. International Journal of Agronomy 2012, Article ID 893953. Available from: http://dx.doi.org/10.1155/2012/893953.CrossRefGoogle Scholar
Riar, D. S., Norsworthy, J. K., Srivastava, V., Nandula, V., Bond, J. A. & Scott, R. C. (2013). Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). Journal of Agricultural and Food Chemistry 61, 278289.CrossRefGoogle ScholarPubMed
Roso, A. C., Merotto, A. Jr & Delatorre, C. A. (2010 a). Bioassays for diagnosis of resistance to the herbicides imidazolinones in rice plants. Planta Daninha 28, 411419.CrossRefGoogle Scholar
Roso, A. C., Merotto, A. Jr, Delatorre, C. A. & Menezes, V. G. (2010 b). Regional scale distribution of imidazolinone herbicide-resistant alleles in red rice (Oryza sativa L.) determined through SNP markers. Field Crops Research 119, 175182.CrossRefGoogle Scholar
Ruiz-Santaella, J. P., De Prado, R., Wagner, J., Fischer, A. J. & Gerhards, R. (2006). Resistance mechanisms to cyhalofop-butyl in a biotype of Echinochloa phyllopogon (Stapf) Koss. from California. Journal of Plant Diseases and Protection Special Issue XX, 95100.Google Scholar
Siminszky, B. (2006). Plant cytochrome P450-mediated herbicide metabolism. Phytochemistry Reviews 5, 445458.CrossRefGoogle Scholar
Sudianto, E., Beng-Kah, S., Ting-Xiang, N., Saldain, N. E., Scott, R. C. & Burgos, N. R. (2013). Clearfield (R) rice: its development, success, and key challenges on a global perspective. Crop Protection 49, 4051.CrossRefGoogle Scholar
Tabacchi, M., Mantegazza, R., Spada, A. & Ferrero, A. (2006). Morphological traits and molecular markers for classification of Echinochloa species from Italian rice fields. Weed Science 54, 10861093.CrossRefGoogle Scholar
Uchino, A., Ogata, S., Kohara, H., Yoshida, S., Yoshioka, T. & Watanabe, H. (2007). Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides. Weed Biology and Management 7, 8996.CrossRefGoogle Scholar
Valverde, B. E., Chaves, L., Garita, I., Ramírez, F., Vargas, E., Carmiol, J., Riches, C. R. & Caseley, J. C. (2001). Modified herbicide regimes for propanil-resistant junglerice control in rain-fed rice. Weed Science 49, 395405.CrossRefGoogle Scholar
White, A. R., Kaye, C., Poupard, J., Pypstra, R., Woodnutt, G. & Wynne, B. (2004). Augmentine® (amoxicillin/clavulanate) in the treatment of community-acquired respiratory tract infection: a review of the continuing development of an innovative antimicrobial agent. Journal of Antimicrobial Chemotherapy 53 (Suppl. 1), i3i20.CrossRefGoogle ScholarPubMed
Yasuor, H., TenBrook, P. L., Tjeerdema, R. S. & Fischer, A. J. (2008). Responses to clomazone and 5-ketoclomazone by Echinochloa phyllopogon resistant to multiple herbicides in Californian rice fields. Pest Management Science 64, 10311039.CrossRefGoogle ScholarPubMed
Yasuor, H., Osuna, M. D., Ortiz, A., Saldain, N. E., Eckert, J. W. & Fischer, A. J. (2009). Mechanism of resistance to penoxsulam in late watergrass [Echinochloa phyllopogon (Stapf) Koss.]. Journal of Agricultural and Food Chemistry 57, 36533660.CrossRefGoogle ScholarPubMed
Yasuor, H., Zou, W., Tolstikov, V. V., Tjeerdema, R. S. & Fischer, A. J. (2010). Differential oxidative metabolism and 5-ketoclomazone accumulation are involved in Echinochloa phyllopogon resistance to clomazone. Plant Physiology 153, 319326.CrossRefGoogle ScholarPubMed
Yasuor, H., Milan, M., Eckert, J. W. & Fischer, A. J. (2012). Quinclorac resistance: a concerted hormonal and enzymatic effort in Echinochloa phyllopogon. Pest Management Science 68, 108115.CrossRefGoogle ScholarPubMed
Yu, Q., Abdallah, I., Han, H., Owen, M. & Powles, S. (2009). Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum. Planta 230, 713723.CrossRefGoogle ScholarPubMed
Yun, M. S., Yogo, Y., Miura, R., Yamasue, Y. & Fischer, A. J. (2005). Cytochrome P-450 monooxygenase activity in herbicide-resistant and -susceptible late watergrass (Echinochloa phyllopogon). Pesticide Biochemistry and Physiology 83, 107114.CrossRefGoogle Scholar