Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T19:27:18.716Z Has data issue: false hasContentIssue false

Differences in skeletal muscle proteolysis in Nellore and Angus cattle might be driven by Calpastatin activity and not the abundance of Calpain/Calpastatin

Published online by Cambridge University Press:  09 November 2017

T. S. MARTINS
Affiliation:
Department of Animal Science, Universidade Federal de Viçosa, Viçosa-MG, Brazil
L. M. P. SANGLARD
Affiliation:
Department of Animal Science, Iowa State University, Ames-IA, USA
W. SILVA
Affiliation:
Department of Animal Science, Universidade Federal de Viçosa, Viçosa-MG, Brazil
M. L. CHIZZOTTI
Affiliation:
Department of Animal Science, Universidade Federal de Viçosa, Viçosa-MG, Brazil
M. M. LADEIRA
Affiliation:
Department of Animal Science, Universidade Federal de Lavras, Lavras-MG, Brazil
N. V. L. SERÃO
Affiliation:
Department of Animal Science, Iowa State University, Ames-IA, USA
P. V. R. PAULINO
Affiliation:
Cargill Animal Nutrition, Campinas-SP, Brazil
M. S. DUARTE*
Affiliation:
Department of Animal Science, Universidade Federal de Viçosa, Viçosa-MG, Brazil
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The present study aimed to explore the molecular factors underlying differences in Calpain/Calpastatin proteolytic system in Nellore and Angus cattle. Longissimus muscle samples were collected in Nellore (n = 6; body weight (BW) = 373 ± 37·3 kg) and Angus (n = 6; BW = 383 ± 23·9 kg) cattle at slaughter for analysis of gene and protein expression, and Calpastatin enzyme activity. Additionally, the myofibrillar fragmentation index was used to quantify the extension of proteolysis in longissimus muscle samples. A greater myofibrillar fragmentation was observed in skeletal muscle of Angus compared with Nellore cattle. Conversely, no differences were found between breeds for mRNA expression of Calpain 1 (CAPN1) and Calpastatin (CAST). Similarly, no differences were observed for the abundance of Calpain and Calpastatin proteins between skeletal muscles of Nellore and Angus cattle. Despite the lack of differences in mRNA and protein abundance, a greater activity of Calpastatin was observed in skeletal muscle of Nellore compared with Angus cattle. These data indicate that the greater proteolysis in skeletal muscle of Angus compared with Nellore cattle is mainly driven by a greater Calpastatin activity rather than Calpain or Calpastatin mRNA and protein expression.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Averna, M., De Tullio, R., Passalacqua, M., Salamino, F., Pontremoli, S. & Melloni, E. (2001). Changes in intracellular calpastatin localization are mediated by reversible phosphorylation. Biochemical Journal 354, 2530.CrossRefGoogle ScholarPubMed
Campbell, R. L. & Davies, P. L. (2012). Structure-function relationships in calpains. Biochemical Journal 447, 335351.CrossRefGoogle ScholarPubMed
Cruzen, S. M. (2013). Characterization of the skeletal muscle calpain/calpastatin system in growth models in swine and cattle. Ph.D. Thesis, Iowa State University, Ames, Iowa.Google Scholar
Cruzen, S. M., Paulino, P. V. R., Lonergan, S. M. & Huff-Lonergan, E. (2014). Postmortem proteolysis in three muscles from growing and mature beef cattle. Meat Science 96, 854861.CrossRefGoogle ScholarPubMed
Culler, R. D., Parrish, F. C., Smith, G. C. & Cross, H. R. (1978). Relationship pf myofibril fragmentation index to certain chemical, physical and sensory characteristics of bovine longissimus muscle. Journal of Food Science 43, 11771180.CrossRefGoogle Scholar
Curi, R. A., Chardulo, L. A. L., Mason, M. C., Arrigoni, M. D. B., Silveira, A. C. & De Oliveira, H. N. (2009). Effect of single nucleotide polymorphisms of CAPN1 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus . Animal Genetics 40, 456462.Google Scholar
Curi, R. A., Chardulo, L. A. L., Giusti, J., Silveira, A. C., Martins, C. L. & De Oliveira, H. N. (2010). Assessment of GH1, CAPN1 and CAST polymorphisms as markers of carcass and meat traits in Bos indicus and Bos Taurus–Bos indicus cross beef cattle. Meat Science 86, 915920.CrossRefGoogle ScholarPubMed
Ferguson, D. M., Jiang, S. T., Hearnshaw, H., Rymill, S. R. & Thompson, J. M. (2000). Effect of electrical stimulation on protease activity and tenderness of M. longissimus from cattle with different proportions of Bos indicus content. Meat Science 55, 265272.Google Scholar
Giusti, J., Castan, E., Dal Pai, M., Arrigoni, M. D. B., Rodrigues Baldin, S. & De Oliveira, H. N. (2013). Expression of genes related to quality of Longissimus dorsi muscle meat in Nellore (Bos indicus) and Canchim (5/8 Bos taurus × 3/8 Bos indicus) cattle. Meat Science 94, 247252.Google Scholar
Gomes, R. A., Busato, K. C., Ladeira, M. M., Johnson, K. A., Galvão, M. C., Rodrigues, A. C. & Chizzotti, M. L. (2017). Energy and protein requirements for Angus and Nellore young bulls. Livestock Science 195, 6773.CrossRefGoogle Scholar
Gornall, A. G., Bardawill, C. J. & David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry 177, 751766.CrossRefGoogle ScholarPubMed
Harmer, A. R., McKenna, M. J., Sutton, J. R., Snow, R. J., Ruell, P. A., Booth, J., Thompson, M. W., Mackay, N. A., Stathis, C. G., Crameri, R. M., Carey, M. F. & Eager, D. M. (2000). Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. Journal of Applied Physiology 89, 17931803.Google Scholar
Koohmaraie, M. (1990). Quantification of Ca2(+)-dependent protease activities by hydrophobic and ion-exchange chromatography. Journal of Animal Science 68, 659665.Google Scholar
Koohmaraie, M., Shackelford, S. D., Wheeler, T. L., Lonergan, S. M. & Doumit, M. E. (1995). A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits. Journal of Animal Science 73, 35963607.Google Scholar
Koohmaraie, M., Kent, M. P., Shackelford, S. D., Veiseth, E. & Wheeler, T. L. (2002). Meat tenderness and muscle growth: is there any relationship? Meat Science 62, 345352.Google Scholar
Krawiec, B. J., Frost, R. A., Vary, T. C., Jefferson, L. S. & Lang, C. H. (2005). Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis. American Journal of Physiology – Endocrinology and Metabolism 289, E969E980.CrossRefGoogle ScholarPubMed
Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. Methods 25, 402408.Google Scholar
National Academies of Sciences, Engineering, and Medicine (NASEM) (2016). Nutrient Requirements of Beef Cattle, 8th edn, Washington, DC: The National Academies Press.Google Scholar
Nattrass, G. S., Cafe, L. M., McIntyre, B. L., Gardner, G. E., McGilchrist, P., Robinson, D. L., Wang, Y. H., Pethick, D. W. & Greenwood, P. L. (2014). A post-transcriptional mechanism regulates calpastatin expression in bovine skeletal muscle. Journal of Animal Science 92, 443455.CrossRefGoogle ScholarPubMed
Olson, D. G., Parrish, F. C. Jr & Stromer, M. H. (1976). Myofibril fragmentation and shear resistance of three bovine muscles during postmortem storage. Journal of Food Science 41, 10361041.Google Scholar
Pringle, T. D., Williams, S. E., Lamb, B. S., Johnson, D. D. & West, R. L. (1997). Carcass characteristics, the calpain proteinase system, and aged tenderness of Angus and Brahman crossbred steers. Journal of Animal Science 75, 29552961.Google Scholar
Rubio Lozano, M. S., Alfaro-Zavala, S., Sifuentes-Rincón, A. M., Parra-Bracamonte, G. M., Braña Varela, D., Medina, R. D. M., Pérez Linares, C., Ríos Rincón, F., Sánchez Escalante, A., Torrescano Urrutia, G. & Figueroa Saavedra, F. (2016). Meat tenderness genetic and genomic variation sources in commercial beef cattle. Journal of Food Quality 39, 150156.Google Scholar
Tizioto, P. C., Decker, J. E., Taylor, J. F., Schnabel, R. D., Mudadu, M. A., Silva, F. L., Mourao, G. B., Coutinho, L. L., Tholon, P., Sonstegard, T. S., Rosa, A. N., Alencar, M. M., Tullio, R. R., Medeiros, S. R., Nassu, R. T., Feijo, G. L., Silva, L. O., Torres, R. A., Siqueira, F., Higa, R. H. & Regitano, L. C. (2013). Genome scan for meat quality traits in Nellore beef cattle. Physiological Genomics 45, 10121020.CrossRefGoogle Scholar
Wulf, D. M., Emnett, R. S., Leheska, J. M. & Moeller, S. J. (2002). Relationships among glycolytic potential, dark cutting (dark, firm, and dry) beef, and cooked beef palatability. Journal of Animal Science 80, 18951903.CrossRefGoogle ScholarPubMed