Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T19:05:15.600Z Has data issue: false hasContentIssue false

The determination of the volatile fatty acids formed during the fermentation of grass/water mixtures

Published online by Cambridge University Press:  27 March 2009

A. J. G. Barnett
Affiliation:
Division of Agricultural Biochemistry, Department of Biological Chemistry, University of Aberdeen
R. E. B. Duncan
Affiliation:
Division of Agricultural Biochemistry, Department of Biological Chemistry, University of Aberdeen

Extract

1. The use of the technique of gas-partition chromatography in the investigation of the formation of volatile acids in minced grass/water slurries is discussed.

2. Slurries kept anaerobically at 17, 37 and 62° for 13 weeks have been examined, and the amounts of the different volatile acids formed have been estimated. It has been noted that butyric acid forms most readily in the slurry at 37°, while in aerated slurries at 17°, the formation of volatile fatty acids is more speedy than under anaerobic conditions.

3. Only acetic, propionic and butyric acids have been noted so far, and the highest concentrations of the acids observed in any slurry were 5, 1·25 and 4% respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L. A. & Harrison, J. (1937). Ann. Appl. Biol. 24, 148.CrossRefGoogle Scholar
Barnett, A. J. G. (1952). J. Sci. Food Agric. 3, 199.CrossRefGoogle Scholar
Barnett, A. J. G. & Duncan, E. E. B. (1952). Nature, Lond. (in the Press).Google Scholar
Dyer, D. C. (1917). J. Biol. Chem. 28, 445.CrossRefGoogle Scholar
Fitz, A. (1878). Ber. dtsch. chem. Ges. 2, 1890.CrossRefGoogle Scholar
Foreman, F. W. (1920). Biochem. J. 14, 451.CrossRefGoogle Scholar
Foreman, F. W. (1928). Biochem. J. 22, 208.CrossRefGoogle Scholar
Freudenreich, E. & Orla Jensen, S. (1907). Zbl. Bakt. II, 17, 529.Google Scholar
Hiscox, F. R. & Berridge, N. J. (1950). Nature, Lond., 166, 522.CrossRefGoogle Scholar
James, A. T. & Martin, A. J. P. (1952). Biochem. J. 50, 679.CrossRefGoogle Scholar
Moyle, V., Baldwin, E. & Scarisbrick, R. (1948). Biochem. J. 43, 308.CrossRefGoogle Scholar
Reid, R. L. & Lederer, M. (1952). Biochem. J. 50, 60.CrossRefGoogle Scholar
Scarisbrick, R. (1952). Biochem. J. 50, xxxiv.Google Scholar
Virtanen, A. I. & Miettinen, J. K. (1951). Nature, Lond., 168, 294.CrossRefGoogle Scholar
Watson, S. J. (1939). Science and Practice of Conservation: Grass and Forage Crops, p. 278. Publ. by Fert. and Feed. St. J.Google Scholar
Watson, S. J. (1951). Silage, p. 110. London: Crosby, Lockwood.Google Scholar
Wiegner, G. (1926). Anleitung zum quantitativen agrikulturchemischen Praktikum. Berlin: Gebrüder Borntraeger.Google Scholar
Woodman, H. E. (1925). J. Agric. Sci. 15, 343.CrossRefGoogle Scholar