Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-07T14:28:29.703Z Has data issue: false hasContentIssue false

Cross-pollination benefits differ among oilseed rape varieties

Published online by Cambridge University Press:  29 July 2013

A. HUDEWENZ*
Affiliation:
Institute of Ecology, Ecosystem Functions, Leuphana University of Lüneburg, Scharnhorststr. 1, D-21335 Lüneburg, Germany
G. PUFAL
Affiliation:
Institute of Ecology, Ecosystem Functions, Leuphana University of Lüneburg, Scharnhorststr. 1, D-21335 Lüneburg, Germany
A-L. BÖGEHOLZ
Affiliation:
Institute of Ecology, Ecosystem Functions, Leuphana University of Lüneburg, Scharnhorststr. 1, D-21335 Lüneburg, Germany
A-M. KLEIN
Affiliation:
Institute of Ecology, Ecosystem Functions, Leuphana University of Lüneburg, Scharnhorststr. 1, D-21335 Lüneburg, Germany
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Winter oilseed rape (Brassica napus) is an important crop for human consumption and biofuel production and its production is increasing worldwide. It is generally assumed that cross-pollination by insects increases oilseed rape yield but testing of this has been restricted to a few rapeseed varieties and produced varying results. The present study determines whether cross-pollination benefits a number of oilseed rape varieties by comparing yield in the presence and absence of insects. Four rapeseed varieties (Sherlock, Traviata, Treffer and Visby) were used with ten individuals each in four pollination treatments: (1) supplementary hand-pollination, (2) open pollination with insects able to access the flowers, (3) wind pollination and (4) autonomous self-pollination. Across all four varieties, open and supplementary hand-pollination treatments resulted in higher fruit set, numbers of seeds per pod and seed yield compared with wind and self-pollination. The cross-pollination benefits, however, differed among rapeseed varieties: Treffer and Visby had a higher dependence on open (insects) and supplementary cross-pollination than Sherlock and Traviata. Across all four varieties, seed weight compensated for reduced fruit set and was highest when plants were self-pollinated. The present results highlight the importance of considering varietal differences in crop pollination research. Information on the pollination requirements of crop varieties is required by farmers to optimize management decisions in a world of increasing agropollination deficits.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. (2008). Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Current Biology 18, 15721575.CrossRefGoogle ScholarPubMed
Biesmeijer, J. C., Roberts, S. P. M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A. P., Potts, S. G., Kleukers, R., Thomas, C. D., Settele, J. & Kunin, W. E. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351354.Google Scholar
Bommarco, R., Marini, L. & Vaissière, B. E. (2012). Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 169, 10251032.Google Scholar
Cramer, N. (1990). Raps: Anbau und Verwertung. Stuttgart: Ulmer.Google Scholar
Cresswell, J. E., Davies, T. W., Patrick, M. A., Russell, F., Pennel, C., Vicot, M. & Lahoubi, M. (2004). Aerodynamics of wind pollination in a zoophilous flower, Brassica napus. Functional Ecology 18, 861866.CrossRefGoogle Scholar
Durán, X. A., Ulloa, R. B., Carrillo, J. A., Contreras, J. L. & Bastidas, M. T. (2010). Evaluation of yield component traits of honeybee pollinated (Apis mellifera L.) Rapeseed canola (Brassica napus L.). Chilean Journal of Agricultural Research 70, 309314.Google Scholar
Eisikowitch, D. (1981). Some aspects of pollination of oil-seed rape (Brassica napus L.). Journal of Agricultural Science, Cambridge 96, 321326.CrossRefGoogle Scholar
FAOSTAT (2012). FAOSTAT. Available from: http://faostat.fao.org/site/567/default.aspx (verified 5 June 2013).Google Scholar
Jauker, F., Bondarenko, B., Becker, H. C. & Steffan-Dewenter, I. (2012). Pollination efficiency of wild bees and hoverflies provided to oilseed rape. Agricultural and Forest Entomology 14, 8187.CrossRefGoogle Scholar
Klein, A. M., Steffan-Dewenter, I. & Tscharntke, T. (2003). Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae). American Journal of Botany 90, 153157.Google Scholar
Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C. & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274, 303313.Google Scholar
Kołtowski, Z. (2005). The effect of pollinating insects on the yield of winter rapeseed (Brassica napus L. var. napus f. biennis) cultivars. Journal of Apicultural Science 49, 2941.Google Scholar
Kristen, R. (2008). Entomofauna an Raps: Verteilung, Bestäubung und ökologische Bedeutung in der Kulturlandschaft. Gieβen, Germany: Justus-Liebig-Universität Gieβen.Google Scholar
KWS (2012). Rapssorten von KWS. Einbeck, Germany: KWS. Available from: http://www.kws.de/aw/KWS/germany/Produkte/Oelfruechte/~dbor/Sortenuebersicht/ (verified 5 June 2013).Google Scholar
Lancashire, P. D., Bleiholder, H., Boom, T. V. D., Langelüddeke, P., Stauss, R., Weber, E. & Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology 119, 561601.Google Scholar
Munawar, M. S., Raja, S., Siddique, M., Niaz, S. & Amjad, M. (2009). The pollination by honeybee (Apis mellifera L.) increases yield of canola (Brassica napus L.). Pakistan Entomologist 31, 103106.Google Scholar
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution 25, 345353.CrossRefGoogle ScholarPubMed
R Development Core Team (2012). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Sabbahi, R., De Oliveira, D. & Marceau, J. (2005). Influence of honey bee (Hymenoptera: Apidae) density on the production of canola (Crucifera: Brassicacae). Journal of Economic Entomology 98, 367372.Google Scholar
Steffan-Dewenter, I. (2003). Seed set of male-sterile and male-fertile oilseed rape (Brassica napus) in relation to pollinator density. Apidologie 34, 227235.CrossRefGoogle Scholar
Van der Velde, M., Bouraoui, F. & Aloe, A. (2008). Pan-European regional-scale modelling of water and N efficiencies of rapeseed cultivation for biodiesel production. Global Change Biology 15, 2437.Google Scholar
Westcott, L. & Nelson, D. (2001). Canola pollination: an update. Bee World 82, 115129.Google Scholar
Williams, I. H., Martin, A. P. & White, R. P. (1986). The pollination requirements of oil-seed rape (Brassica napus L.). Journal of Agricultural Science, Cambridge 106, 2730.Google Scholar