Article contents
Crop production and water-use. II. The development and validation of a water-use model for sugarbeet
Published online by Cambridge University Press: 27 March 2009
Summary
As a prerequisite for developing crop-yield/water-use functions for sugarbeet using the results of historical irrigation experiments, it was necessary to develop a water-use model which could operate with a limited data set. The general form of this model has been reported by Wright et al. (1994). In this paper the development and validation of the model for the sugarbeet crop is described.
The canopy was modelled in terms of the leaf area index and the relative interception of incoming solar radiation using functions based on thermal time and time. Four phases of growth were identified: emergence, slow-growth, fast-growth and full-canopy. An empirical drought factor was included to allow for the effects of water stress on canopy development during the slow- and fastgrowth expansion phases. Root development was described using a three phase model: initial (temperature dependent), linear and maximum depth (both time dependent).
Independent data previously reported from Broom's Barn Experimental Station were then used to validate the model in terms of its capacity to predict crop canopy development, with and without drought stress, soil water extraction at different depths and soil water deficits during the season. The study confirmed the validity of the model for predicting the water-use of sugarbeet.
- Type
- Crops and Soils
- Information
- Copyright
- Copyright © Cambridge University Press 1994
References
- 4
- Cited by