Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T05:46:06.625Z Has data issue: false hasContentIssue false

A critical survey of investigations on the “wilting coefficient” of soils

Published online by Cambridge University Press:  27 March 2009

J. V. Botelho da Costa
Affiliation:
Soil Physics Department, Rothamsted Experimental Station, Harpenden, Herts

Extract

The experiments of Briggs & Shantz led them to conclude that the “wilting coefficient” is a soil “constant” which is (a) independent of the kind of plant used as indicator, (b) independent of the conditions under which the plant was grown, and (c) directly related to several other soil constants.

Subsequent research as well as an examination of their own results has shown that (c) is untrue, while (a) and (b) are substantially correct for hygrophytes and mesophytes. Earlier writers have been led to wrong conclusions regarding (a) and (b) through assuming (c) to be correct and through disregarding the particular nature of “permanent wilting” as defined by Briggs & Shantz.

The fact that considerable variation is to be found between the osmotic pressure found in different plants, in different parts of the same plant and in the same part under different conditions is not at variance with conclusions (a) and (b) when properly understood.

An important factor making for the substantial constancy of the “wilting coefficient” for a given soil is the extreme steepness of the curve connecting suction pressure and soil moisture content, in consequence of which differences of suction pressure of unquestionable significance from the standpoint of plant physiology give rise to differences in soil moisture content that are too small to be detected.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1938

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakke, A. L. (1918). Bot. Gaz. 66, 81.Google Scholar
Botelho da Costa, J. V. (1933). Rev. agron. 21, 63.Google Scholar
Botelho da Costa, J. V. (1938). J. agric. Sci. 28, 654.CrossRefGoogle Scholar
Briggs, L. J. & Shantz, H. L. (1912). Bull. U.S. Bur. Pl. Ind. 230, 11.Google Scholar
Brown, W. H. (1912). Plant World, 15, 121.Google Scholar
Caldwell, J. S. (1913). Physiol. Res. 1, 1.Google Scholar
Capalungan, A. V. & Murphy, H. F. (1930). J. Amer. Soc. Agron. 22, 842.CrossRefGoogle Scholar
Crump, W. B. (1913). J. Ecol. 1, 96.Google Scholar
Dixon, H. H. & Atkins, W. R. G. (1910). Proc. R. Dublin Soc. 12, 275.Google Scholar
Dixon, H. H. & Atkins, W. R. G. (1913). Proc. R. Dublin Soc. 13, 422, 434; 14, 9.Google Scholar
Dixon, H. H. & Atkins, W. R. G. (1915). Proc. R. Dublin Soc. 14, 374, 445.Google Scholar
Dixon, H. H. & Atkins, W. R. G. (1916). Proc. R. Dublin Soc. 15, 51.Google Scholar
Drabble, E. & Drabble, H. (1907). Biochem. J. 2, 117.CrossRefGoogle Scholar
Eaton, F. M. (1927). Amer. J. Bot. 14, 212.Google Scholar
Edlefsen, N. E. (1934). Soil Sci. 38, 29.Google Scholar
Ernest, Elizabeth C. M. (1935). Plant Physiol. 10, 553.Google Scholar
Hannig, E. (1912). Ber. dtsch. bot. Ges. 30, 194.Google Scholar
Harris, J. A. (1916). Physiol. Res. 2, 1.Google Scholar
Hibbard, R. P. & Harrington, O. E. (1916). Physiol. Res. 1, 441.Google Scholar
Hill, T. G. (1908). New Phytol. 7, 133.Google Scholar
Kearny, T. H. (1913). Circ. U.S. Bur. Pl. Ind. 109.Google Scholar
Keen, B. A. (1931). The Physical Properties of the Soil. London.Google Scholar
Keen, B. A. & Raczkowski, H. (1921). J. agric. Sci. 11, 441.Google Scholar
Livingston, B. E. & Koketsu, R. (1920). Soil Sci. 9, 469.CrossRefGoogle Scholar
McCool, M. M. & Millar, C. E. (1917). Soil Sci. 3, 113.CrossRefGoogle Scholar
Maximov, N. A. (1929). The Plant in Relation to Water. London.Google Scholar
Miller, Edwin C. (1931). Plant Physiology. New York and London.Google Scholar
Mitscherlich, E. A. (1923). Bodenkunde für Land- und Forstwirte, 4th ed. Berlin.Google Scholar
Molz, F. J. (1926). Amer. J. Bot. 13, 433, 465.Google Scholar
Parsons, G. A. (1924). Ecology, 5, 340.CrossRefGoogle Scholar
Puri, A. N., Crowther, E. M. & Keen, B. A. (1925). J. agric. Sci. 15, 68.Google Scholar
Puri, A. N. (1925). J. agric. Sci. 15, 272.Google Scholar
Roberts, E. A. (1916). Bot. Gaz. 62, 488.Google Scholar
Robinson, W. O. (1922). J. phys. Chem. 26, 647.CrossRefGoogle Scholar
Schofield, R. K. & Botelho da Costa, J. V. (1935). Trans. Third Int. Congr. Soil Sci. 1, 6.Google Scholar
Shaw, H. R. & Swezey, J. A. (1935). Hawaii. Plant. Rec. 39, 68.Google Scholar
Shive, J. W. & Livingston, B. E. (1914). Plant World, 17, 81.Google Scholar
Shull, C. A. (1916). Bot. Gaz. 62, 1.Google Scholar
Shull, C. A. (1924). Ecology, 5, 230.Google Scholar
Shull, C. A. (1930). J. Amer. Soc. Agron. 22, 459.Google Scholar
Thomas, M. D. (1921). Soil Sci. 11, 409.Google Scholar
Thomas, M. D. (1924). Soil Sci. 17, 1.Google Scholar
Thomas, M. D. (1928). Soil Sci. 25, 409.Google Scholar
Ursprung, A. (1935). Plant Physiol. 10, 115.Google Scholar
Veihmeyer, F. J. & Hendrickson, A. H. (1928). Plant Physiol. 3, 355.Google Scholar
Veihmeyer, F. J. & Hendrickson, A. H. (1930). Circ. Calif, agric. Exp. Sta. 50.Google Scholar
Veihmeyer, F. J. & Hendrickson, A. H. (1934). Bull. Amer. Soil Surv. Ass. 15.Google Scholar
Wadsworth, H. A. & Das, U. K. (1930). Hawaii. Plant. Rec. 34, 289.Google Scholar
Work, R. A. & Lewis, M. R. (1934). Agric. Engng., 15, 355.Google Scholar