Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T09:57:52.931Z Has data issue: false hasContentIssue false

Correlating physiological parameters with biomarkers for UV-B stress indicators in leaves of grapevine cultivars Pinot noir and Riesling

Published online by Cambridge University Press:  24 July 2012

K. SCHOEDL*
Affiliation:
Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
R. SCHUHMACHER
Affiliation:
Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 20, A-3430 Tulln, Austria
A. FORNECK
Affiliation:
Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The robustness of seven physiological parameters together with two potential biomarkers for ultraviolet (UV)-B stress assessment was tested in greenhouse assays on the Vitis vinifera L. cultivars Pinot noir and Riesling. Effects of year, UV-B treatment, cultivar and clone were studied in four individual experiments. Grapevine plants were exposed to three dosed UV-B stress treatments (−UV-B: no UV-B radiation; +UV-B: daily dose of 4856·3 J/m2 UV-BBE; ++UV-B: daily dose of 7025·3 J/m2 UV-BBE) to detect changes of chlorophyll fluorescence and gas exchange parameters. Significant correlations between the leaf polyphenols quercetin-3-O-glucoside and kaempferol-3-O-glucoside with the maximum fluorescence (Fm), the variable fluorescence (Fv) and the maximum quantum yield for photosystem (PS) II (Fv/Fm) were found, which confirmed the biomarkers’ relevance, additionally validated by cultivar- and year-independency.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamse, P. & Britz, S. J. (1992). Spectral quality of two fluorescent UV sources during long-term use. Photochemistry and Photobiology 56, 641644.CrossRefGoogle Scholar
Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment 24, 13371344.CrossRefGoogle Scholar
Anhalt, U. C. M., Schoedl, K. & Forneck, A. (2011). Rieslingklone zeigen Variabilität in der UV-B Stressresistenz. Deutsches Weinbau-Jahrbuch 62, 165170.Google Scholar
Baker, N. R. & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55, 16071621.CrossRefGoogle ScholarPubMed
Bertamini, M., Muthuchelian, K. & Nedunchezhian, N. (2004). Photoinhibition of Photosynthesis in sun and shade grown leaves of grapevine (Vitis vinifera L.). Photosynthetica 42, 714.CrossRefGoogle Scholar
Björn, L. O. & Teramura, A. H. (1993). Simulation of daylight ultraviolet radiation and effects of ozone depletion. In Environmental UV Photobiology (Eds Young, A. R., Björn, L. O., Moan, J. & Nultsch, W.), pp. 4171. New York: Plenum Press.CrossRefGoogle Scholar
Blaich, R., Konradi, J., Ruhl, E. & Forneck, A. (2007). Assessing genetic variation among Pinot noir (Vitis vinifera L.) clones with AFLP markers. American Journal of Enology and Viticulture 58, 526529.CrossRefGoogle Scholar
Burchard, P., Bilger, W. & Weissenböck, G. (2000). Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant, Cell and Environment 23, 13731380.CrossRefGoogle Scholar
Calderini, D. F., Lizana, X. C., Hess, S., Jobet, C. R. & Zúniga, J. A. (2008). Grain yield and quality of wheat under increased ultraviolet radiation (UV-B) at later stages of the crop cycle. Journal of Agricultural Science, Cambridge 146, 5764.CrossRefGoogle Scholar
Caldwell, M. M. (1971). Solar irradiation and the growth and development of higher plants. In Photophysiology (Ed. Giese, A. C.), pp. 131177. New York: Academic Press.CrossRefGoogle Scholar
Castellarin, S. & Di Gaspero, G. (2007). Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biology 7, 46. doi:10.1186/1471-2229-7-46.CrossRefGoogle ScholarPubMed
Darné, G. & Glories, Y. (1988). Les anthocyanes des feuilles de différentes variétés de Vitis vinifera L. entre la véraison des raisins et la chute des feuilles. Vitis 27, 7178.Google Scholar
Deluc, L. G., Quilici, D. R., Decendit, A., Grimplet, J., Wheatley, M. D., Schlauch, K. A., Merillon, J. M., Cushman, J. C. & Cramer, G. R. (2009). Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10, 212. doi:10.1186/1471-2164-10-212.CrossRefGoogle ScholarPubMed
Engelsen, O. (2005). Fast Simulation of Downward UV Doses, Indices and Irradiance at the Earth's Surface. Tromsø, Norway: Norwegian Institute for Air Research. Software available online at http://nadir.nilu.no/~olaeng/fastrt/fastrt.html (verified 16 May 2012).Google Scholar
Ernst, W. H. O. & Peterson, P. J. (1994). The role of biomarkers in environmental assessment (4). Terrestrial plants. Ecotoxicology 3, 180192.CrossRefGoogle ScholarPubMed
Flexas, J., Baron, M., Bota, J., Ducruet, J.-M., Galle, A., Galmes, J., Jimenez, M., Pou, A., Ribas-Carbo, M., Sajnani, C., Tomas, M. & Medrano, H. (2009). Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri×V. rupestris). Journal of Experimental Botany 60, 23612377.CrossRefGoogle Scholar
Flint, S. D. & Caldwell, M. M. (2003). A biological spectral weighting function for ozone depletion research with higher plants. Physiologia Plantarum 117, 137144.CrossRefGoogle Scholar
Forneck, A., Benjak, A. & Rühl, E. H. (2009). Grapevine (Vitis spp.): example of clonal reproduction in agricultural important plants. In Lost Sex: The Evolutionary Biology of Parthenogenesis (Eds Schön, I., Martens, K. & Dijk, P. V.), pp. 581598. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Genty, B., Briantais, J.-M. & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) – General Subjects 990, 8792.CrossRefGoogle Scholar
Glenn, M., Wünsche, J., McIvor, I., Nissen, R. & George, A. (2008). Ultraviolet radiation effects on fruit surface respiration and chlorophyll fluorescence. Journal of Horticultural Science and Biotechnology 83, 4350.CrossRefGoogle Scholar
Green, A. E. S., Sawada, T. & Shettle, E. P. (1974). The middle ultraviolet reaching the ground. Photochemistry and Photobiology 19, 251259.CrossRefGoogle Scholar
Hansatech Instruments (2006). Operations Manual – Setup, Installation and Maintenance. Handy PEA, Pocket PEA & PEA Plus Software. Norfolk, UK: Hansatech Instruments Ltd.Google Scholar
Harbinson, J. & Rosenqvist, E. (2003). An introduction to chlorophyll fluorescence. In Practical Applications of Chlorophyll Fluorescence in Plant Biology (Eds DeEll, J. R. & Toivonen, P. M. A.), pp. 130. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Hofmann, R. W., Swinny, E. E., Bloor, S. J., Markham, K. R., Ryan, K. G., Campbell, B. D., Jordan, B. R. & Fountain, D. W. (2000). Responses of nine Trifolium repens L. populations to ultraviolet-b radiation: differential flavonol glycoside accumulation and biomass production. Annals of Botany 86, 527537.CrossRefGoogle Scholar
Hofmann, R. W., Campbell, B. D. & Fountain, D. F. (2003). Sensitivity of white clover to UV-B radiation depends on water availability, plant productivity and duration of stress. Global Change Biology 9, 473477.CrossRefGoogle Scholar
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 6570.Google Scholar
Ioki, M., Takahashi, S., Nakajima, N., Fujikura, K., Tamaoki, M., Saji, H., Kubo, A., Aono, M., Kanna, M., Ogawa, D., Fukazawa, J., Oda, Y., Yoshida, S., Watanabe, M., Hasezawa, S. & Kondo, N. (2008). An unidentified ultraviolet-B-specific photoreceptor mediates transcriptional activation of the cyclobutane pyrimidine dimer photolyase gene in plants. Planta 229, 2536.CrossRefGoogle ScholarPubMed
Jansen, M. A. K., Gaba, V. & Greenberg, B. M. (1998). Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends in Plant Science 3, 131135.CrossRefGoogle Scholar
Jenkins, G. I. (2009). Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology 60, 407431.CrossRefGoogle ScholarPubMed
Karabourniotis, G., Kyparissis, A. & Manetas, Y. (1993). Leaf hairs of Olea europeae protect underlying tissues against ultraviolet-B radiation damage. Environmental and Experimental Botany 33, 341345.CrossRefGoogle Scholar
Kolb, C. A., Käser, M. A., Kopecký, J., Zotz, G., Riederer, M. & Pfündel, E. E. (2001). Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiology 127, 863875.CrossRefGoogle ScholarPubMed
Kotilainen, T., Tegelberg, R., Julkunen-Tiitto, R., Lindfors, A. & Aphalo, P. J. (2008). Metabolite specific effects of solar UV-A and UV-B on alder and birch leaf phenolics. Global Change Biology 14, 12941304.CrossRefGoogle Scholar
Krause, G. H. & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42, 313349.CrossRefGoogle Scholar
Kruskal, W. H. & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47, 583621.CrossRefGoogle Scholar
Levene, H. (1960). Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (Eds Olkin, I. & Hotelling, H.), pp. 278292. Palo Alto, CA: Stanford University Press.Google Scholar
Madronich, S., McKenzie, R. L., Bjorn, L. O. & Caldwell, M. M. (1998). Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry and Photobiology B: Biology 46, 519.CrossRefGoogle ScholarPubMed
Majer, P. & Hideg, É. (2012). Developmental stage is an important factor that determines the antioxidant responses of young and old grapevine leaves under UV irradiation in a green-house. Plant Physiology and Biochemistry 50, 1523.CrossRefGoogle Scholar
Mann, H. B. & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18, 5060.CrossRefGoogle Scholar
Maxwell, K. & Johnson, G. N. (2000). Chlorophyll fluorescence: a practical guide. Journal of Experimental Botany 51, 659668.CrossRefGoogle ScholarPubMed
McKenzie, R., Connor, B. & Bodeker, G. (1999). Increased summertime UV radiation in New Zealand in response to ozone loss. Science 285, 17091711.CrossRefGoogle ScholarPubMed
McLeod, A. R. (1997). Outdoor supplementation systems for studies of the effects of increased UV-B radiation. Plant Ecology 128, 7992.CrossRefGoogle Scholar
Mishra, A., Matouš, K., Mishra, K. & Nedbal, L. (2009). Towards discrimination of plant species by machine vision: advanced statistical analysis of chlorophyll fluorescence transients. Journal of Fluorescence 19, 905913.CrossRefGoogle Scholar
Mohammed, G. H., Zarco-Tejada, P. J. & Miller, J. R. (2003). Applications of chlorophyll fluorescence in forestry and ecophysiology. In Practical Applications of Chlorophyll Fluorescence in Plant Biology (Eds DeEll, J. R. & Toivonen, P. M. A.), pp. 79124. Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Mullins, M. G., Bouquet, A. & Williams, L. E. (2004). Biology of the Grapevine. Cambridge, UK: Cambridge University Press.Google Scholar
Nogues, S. & Baker, N. R. (2000). Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. Journal of Experimental Botany 51, 13091317.Google ScholarPubMed
Nunez-Olivera, E., Martinez-Abaigar, J., Tomas, R., Otero, S. & Arroniz-Crespo, M. (2006). Physiological effects of solar ultraviolet-B exclusion on two cultivars of Vitis vinifera L. from La Rioja, Spain. American Journal of Enology & Viticulture 57, 441448.CrossRefGoogle Scholar
OIV (2007). Situation and Statistics of the World Vitiviniculture Sector. Paris: Organisation Internationale de la Vigne et du Vin.Google Scholar
Pfündel, E. E. (2003). Action of UV and visible radiation on chlorophyll fluorescence from dark-adapted grape leaves (Vitis vinifera L.). Photosynthesis Research 75, 2939.CrossRefGoogle ScholarPubMed
Rayapati, A. N., O'Neal, S. & Walsh, D. (2008). Grapevine Leafroll Disease. WSU Extension Publications EB2027E. Pullman, WA: Washington State University.Google Scholar
Rodgers, J. L. & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. American Statistician 42, 5966.CrossRefGoogle Scholar
Roháček, K. (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40, 1329.CrossRefGoogle Scholar
Rosenqvist, E. & van Kooten, O. (2003). Chlorophyll fluorescence: a general description and nomenclature. In Practical Applications of Chlorophyll Fluorescence in Plant Biology (Eds DeEll, J. R. & Toivonen, P. M. A.), pp. 3177. Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Rozema, J., van de Staaij, J., Björn, L. O. & Caldwell, M. (1997). UV-B as an environmental factor in plant life: stress and regulation. Trends in Ecology and Evolution 12, 2228.CrossRefGoogle ScholarPubMed
Schoedl, K., Forneck, A., Sulyok, M. & Schuhmacher, R. (2011). Optimization, in-house validation, and application of a liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based method for the quantification of selected polyphenolic compounds in leaves of grapevine (Vitis vinifera L.). Journal of Agricultural and Food Chemistry 59, 1078710794.CrossRefGoogle ScholarPubMed
Schoedl, K., Schuhmacher, R. & Forneck, A. (2012). Studying the polyphenols of grapevine leaves according to age and insertion level under controlled conditions. Scientia Horticulturae 141, 3741.CrossRefGoogle Scholar
Schultz, H. R. (2000). Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research 6, 212.CrossRefGoogle Scholar
Shapiro, S. S. & Wilk, M. B. (1965). An analysis of variance test for normality. Biometrika 52, 591611.CrossRefGoogle Scholar
Skórska, E. & Szwarc, W. (2007). Influence of UV-B radiation on young triticale plants with different wax cover. Biologia Plantarum 51, 189192.CrossRefGoogle Scholar
Soja, G. & Soja, A.-M. (2005). Recognizing the sources of stress in wheat and bean by using chlorophyll fluorescence induction parameters as inputs for neural network models. Phyton 45, 157168.Google Scholar
Yang, S. H., Wang, L. J., Li, S. H., Duan, W., Loescher, W. & Liang, Z. C. (2007). The effects of UV-B radiation on photosynthesis in relation to Photosystem II photochemistry, thermal dissipation and antioxidant defenses in winter wheat (Triticum aestivum L.) seedlings at different growth temperatures. Functional Plant Biology 34, 907917.CrossRefGoogle ScholarPubMed
Zinser, C. (1996). Induktion der Gene der Zimtalkoholdehydrogenase und der Stilbensynthase durch Ozon und UV-B in der Kiefer (Pinus sylvestris L.). Munich: Ludwig-Maximilians-Universität.Google Scholar
Zribi, L., Fatma, G., Fatma, R., Salwa, R., Hassan, N. & Néjib, R. M. (2009). Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato ‘Solanum lycopersicum (variety Rio Grande)’. Scientia Horticulturae 120, 367372.CrossRefGoogle Scholar