Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T02:58:54.190Z Has data issue: false hasContentIssue false

Condensed tannins extracted from Quebracho affect the fermentation profile, nutritional quality and in vitro gas production of pornunça (Manihot spp.) silages

Published online by Cambridge University Press:  03 August 2021

D. T. Q. Carvalho
Affiliation:
Universidade Federal da Bahia, UFBA, 40170-115, Salvador/BA, Brazil
A. R. F. Lucena
Affiliation:
Universidade Federal do Vale do São Francisco, UNIVASF, 56300-990, Petrolina/PE, Brazil
T. V. C. Nascimento
Affiliation:
Universidade Federal do Maranhão, UFMA, 65080-805, Imperatriz/MA, Brazil
L. M. L. Moura
Affiliation:
Universidade Federal do Vale do São Francisco, UNIVASF, 56300-990, Petrolina/PE, Brazil
P. D. R. Marcelino
Affiliation:
Universidade Federal da Bahia, UFBA, 40170-115, Salvador/BA, Brazil
M. A. À. Queiroz
Affiliation:
Universidade Federal do Vale do São Francisco, UNIVASF, 56300-990, Petrolina/PE, Brazil
S. A. Moraes
Affiliation:
Empresa Brasileira de Pesquisa Agropecuária, Embrapa Semiárido, 56302-970, Petrolina/PE, Brazil
G. C. Gois
Affiliation:
Universidade Federal da Bahia, UFBA, 40170-115, Salvador/BA, Brazil
D. R. Menezes*
Affiliation:
Universidade Federal do Vale do São Francisco, UNIVASF, 56300-990, Petrolina/PE, Brazil
*
Author for correspondence: D. R. Menezes, E-mail: [email protected]

Abstract

The objective was to evaluate the fermentation profile, in vitro gas production and nutritional quality of pornunça (Manihot spp.) silages containing levels of condensed tannin (CT; 0, 4, 8 and 12% on dry matter (DM) basis), at five opening times (0, 3, 7, 14, 28 and 56 days). A completely randomized design in a 4 × 5 factorial arrangement was adopted, with four replications, totalling 80 experimental silos. The pH and NH3-N analyses were performed at all opening times of the silos. The other analyses were performed only with silages opened at 56 days of storage. There was an interaction effect between CT levels and silo opening times for pH and NH3-N. Tannin levels in pornunça silages after 56 days ensiling increased the pH and DM and reduced crude protein (CP) and neutral detergent fibre (NDF). There was a quadratic effect for NH3-N, acetic acid, butyric acid, gas losses, dry matter recovery (DMR), hemicellulose and acid detergent fibre. Inclusion of 4 and 8% CT in pornunça silage promotes a rapid decline in pH, being within the acceptable limit for adequate fermentation at 3 days of ensiling. Silages with 4% CT establish the pH at 28 days of opening the silos, with reduced NH3-N. Silages with 4% CT present higher concentrations of acetic and butyric acids and greater DMR. Inclusion of CT in pornunça silage after 56 days ensiling increases DM and reduces CP and NDF, directly affecting the in vitro degradability and reducing gas production.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczyk, B, Simon, J, Kitunen, V, Adamczyk, S and Smolander, A (2017) Tannins and their complex interaction with different organic nitrogen compounds and enzymes: old paradigms versus recent advances. ChemistryOpen 6, 610614.CrossRefGoogle ScholarPubMed
Amorim, DS, Edvan, RL, Nascimento, RR, Bezerra, LR, Araújo, MJ, Silva, AL, Mielezrski, F and Nascimento, KS (2020) Fermentation profile and nutritional value of sesame silage compared to usual silages. Italian Journal of Animal Science 19, 230239.CrossRefGoogle Scholar
Aoac (2016) Association of official analytical chemists. In Latimer, GW Jr. (ed.), Official Methods of Analysis. 20th Edn. Washington, DC: Aoac, p. 3172.Google Scholar
Araújo, GGL, Santos, GA, Voltolini, TV, Moraes, SA, Pereira, LGR, Gois, GC and Campos, FS (2018) Chemical composition and fermentative characteristics of old man saltbush silage supplemented with energy concentrates. Semina: Ciências Agrárias 39, 11551166.Google Scholar
Bertrand, RL (2019) Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. Journal of Bacteriology 201, 121.CrossRefGoogle ScholarPubMed
Bolsen, KK, Lin, C, Brent, BE and Gadeken, D (1992) Effect of silage additives on the microbial succession and fermentation process of alfalfa and corn silages. Journal of Dairy Science 75, 30663083.CrossRefGoogle Scholar
Bueno, ICS, Brandi, RA, Fagundes, GM, Benetel, G and Muir, JP (2020) The role of condensed tannins in the in vitro rumen fermentation kinetics in ruminant species: feeding type involved? Animals 10, 111.CrossRefGoogle ScholarPubMed
Cordova-Torres, AV, Mendoza-Mendoza, JC, Bernal-Santos, G, Gasca, TG, Kawas, J, Costa, RG, Mondragon Jacobo, C and Andrade-Montemayor, H (2015) Nutritional composition, in vitro degradability and gas production of Opuntia ficus indica and four other wild cacti species. Life Science Journal 12, 4254.Google Scholar
Costa, EIS, Ribeiro, CVDM, Silva, TM, Ribeiro, RDX, Vieira, JF, Lima, AGVO, Barbosa, AM, Silva Junior, JM, Bezerra, LR and Oliveira, RL (2020) Intake, nutrient digestibility, nitrogen balance, serum metabolites and growth performance of lambs supplemented with Acacia mearnsii condensed tannin extract. Animal Feed Science and Technology 272, 128.Google Scholar
Deaville, ER, Givens, DI and Mueller-Harvey, I (2010) Chestnut and mimosa tannin silages: effects in sheep differ for apparent digestibility, nitrogen utilization and losses. Animal Feed Science and Technology 157, 129138.CrossRefGoogle Scholar
Denek, N, Aydin, SS and Can, A (2017) The effects of dried pistachio (Pistachio vera L.) by-product addition on corn silage fermentation and in vitro methane production. Journal of Applied Animal Research 45, 185189.CrossRefGoogle Scholar
Doorenbos, J, Martín-Tereso, J, Dijkstra, J and Van Laar, H (2017) Effect of different levels of rapidly degradable carbohydrates calculated by a simple rumen model on performance of lactating dairy cows. Journal of Dairy Science 100, 54225433.CrossRefGoogle ScholarPubMed
Driehuis, F, Wilkinson, JM, Jiang, Y, Ogunade, I and Adesogan, AT (2018) Silage review: animal and human health risks from silage. Journal of Dairy Science 101, 40934110.CrossRefGoogle ScholarPubMed
Frutos, P, Hervás, G, Natalello, A, Luciano, G, Fondevila, M, Priolo, A and Toral, PG (2020) Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Animal Feed Science and Technology 269, 116.CrossRefGoogle Scholar
Goel, G, Puniya, AK, Aguilar, CN and Singh, K (2005) Interaction of gut microflora with tannins in feeds. Naturwissenschaften 92, 497503.CrossRefGoogle ScholarPubMed
Hamill, PG, Stevenson, A, McMullan, PE, Williams, JP, Lewis, ADR, Sudharsan, S, Stevenson, KE, Farnsworth, KD, Khroustalyova, G, Takemoto, JY, Quinn, JP, Rapoport, A and Hallsworth, JE (2020) Microbial lag phase can be indicative of, or independent from, cellular stress. Scientific Reports 10, 120.CrossRefGoogle ScholarPubMed
Jayanegara, A, Sujarnoko, TU, Ridla, M, Kondo, M and Kreuzer, M (2018) Silage quality as influenced by concentration and type of tannins present in the material ensiled: a meta-analysis. Journal of Animal Physiology and Animal Nutrition 103, 456465.CrossRefGoogle ScholarPubMed
Köppen, W and Geiger, R (1928) Klimate der Erde. Gotha: Verlag Justus Perthes, Wall-map 150cmx200 cm.Google Scholar
Kung, L Jr (2018a) Silage fermentation and additives. Archivos Latinoamericanos de Producción Animal 26, 6166.Google Scholar
Kung, L Jr and Ranjit, NK (2001) The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science 84, 11491155.CrossRefGoogle ScholarPubMed
Kung, L Jr, Shaver, RD, Grant, RJ and Schmidt, RJ (2018b) Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science 101, 40204033.CrossRefGoogle Scholar
Licitra, G, Hernandez, TM and Van Soest, PJ (1996) Standardization of procedures for nitrogen fractionation of ruminant feed. Animal Feed Science and Technology 57, 347358.CrossRefGoogle Scholar
Lucena, ARF, Menezes, DR, Carvalho, DTQ, Matos, JC, Antonelli, AC, Moraes, SA, Dias, FS, Queiroz, MAA and Rodrigues, RTS (2018) Effect of commercial tannin and a pornuncia (Manihot spp.) silage-based diet on the fatty acid profile of Saanen goats’ milk. International Journal of Dairy Technology 71, 18.CrossRefGoogle Scholar
Magalhães, ALR, Teodoro, AL, Gois, GC, Campos, FS, Souza, JSR, Andrade, AP, Lima, IE, Oliveira, LP and Nascimento, DB (2019) Chemical and mineral composition, kinetics of degradation and in vitro gas production of native cactus. Journal of Agricultural Studies 7, 119137.CrossRefGoogle Scholar
Martens, SD, Korn, U, Roscher, S, Pieper, B, Schafft, H and Steinhöfel, O (2019) Effect of tannin extracts on protein degradation during ensiling of ryegrass or lucerne. Grass Forage Science 74, 284296.CrossRefGoogle Scholar
Mauricio, RM, Pereira, LGR, Gonçalves, LC and Rodriguez, NM (2003) Relação entre pressão e volume para implantação da técnica in vitro semi-automática de produção de gases na avaliação de forrageiras tropicais. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 55, 216219.CrossRefGoogle Scholar
McDonald, P, Henderson, AR and Heron, SJE (1991) The Biochemistry of Silage, 2nd Edn. Marlow: Chalcomb Publishing, 340 p.Google Scholar
Menezes, DR, Costa, RG, Araújo, GGL, Pereira, LGR, Nunes, ACB, Henrique, LT and Rodrigues, RTS (2015) Cinética ruminal de dietas contendo farelo de mamona destoxificado. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 67, 636641.CrossRefGoogle Scholar
Mertens, DR (2002) Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. Journal AOAC International 85, 12171240.Google ScholarPubMed
Mota, ADS, Rocha Júnior, VR, Souza, AS, Reis, ST, Tomich, TR, Caldeira, LA, Menezes, GCC and Costa, MD (2011) Perfil de fermentação e perdas na ensilagem de diferentes frações da parte aérea de quatro variedades de mandioca. Revista Brasileira de Zootecnia 40, 14661473.CrossRefGoogle Scholar
Nascimento, JML, Menezes, KMS, Queiroz, MAA and Melo, AMY (2016) Crescimento inicial e composição bromatológica de plantas de pornuncia adubadas com fósforo e inoculadas com fungos micorrízicos arbusculares. Revista Brasileira de Saúde e Produção Animal 17, 561571.CrossRefGoogle Scholar
Nascimento, TVC, Bezerra, LR, Menezes, DR, Lucena, ARF, Queiroz, MAA, Trajano, JS and Oliveira, RL (2017) Condensed tannin-amended cassava silage: fermentation characteristics, degradation kinetics and in-vitro gas production with rumen liquor. The Journal of Agricultural Science 156, 8391.CrossRefGoogle Scholar
Nascimento, TVC, Oliveira, RL, Menezes, DR, Lucena, ARF, Queiroz, MAA, Lima, AGVO, Ribeiro, RDX and Bezerra, LR (2020) Effects of condensed tannin-amended cassava silage blend diets on feeding behavior, digestibility, nitrogen balance, milk yield and milk composition in dairy goats. Animal: An International Journal of Animal Bioscience 15, 17.Google ScholarPubMed
Orlandi, T, Stefanello, S, Mezzomo, MP, Pozo, CA and Kozloski, GV (2020) Impact of a tannin extract on digestibility and net flux of metabolites across splanchnic tissues of sheep. Animal Feed Science and Technology 261, 17.CrossRefGoogle Scholar
Ørskov, ER and Mcdonald, I (1979) The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science 92, 499503.CrossRefGoogle Scholar
Pathak, AK, Dutta, N, Pattanaik, AK, Chaturvedi, VB and Sharma, K (2017) Effect of condensed tannins from Ficus infectoria and Psidium guajava leaf meal mixture on nutrient metabolism, methane emission and performance of lambs. Asian-Australasian Journal of Animal Science 30, 17021710.CrossRefGoogle ScholarPubMed
Salawu, MB, Acamovica, T, Stewart, CS, Hvelplund, T and Weisbjerg, MR (1999) The use of tannins as silage additives: effects on silage composition and mobile bag disappearance of dry matter and protein. Animal Feed Science and Technology 82, 243259.CrossRefGoogle Scholar
Schofield, P, Pitt, RE and Pell, AN (1994) Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science 72, 29802991.CrossRefGoogle ScholarPubMed
Silanikove, N, Perevolotsky, A and Provenza, FD (2001) Use of tannin-binding chemicals to assay for tannins and their negative post ingestive effects in ruminants. Animal Feed Science and Technology 91, 6981.CrossRefGoogle Scholar
Silva, DJ and Queiroz, AC (2006) Análise de Alimentos: Métodos Químicos e Biológicos, 3rd Edn. Viçosa, MG: Editora UFV, p. 235.Google Scholar
Silva, TS, Araujo, GGL, Santos, EM, Oliveira, JS, Campos, FS, Godoi, PFG, Gois, GC, Perazzo, AF, Ribeiro, OL and Turco, SHN (2021) Water intake and ingestive behavior of sheep fed diets based on silages of cactus pear and tropical forages. Tropical Animal Health and Production 53, 244.CrossRefGoogle ScholarPubMed
Syahniar, TM, Ridla, M, Jayanegara, A and Samsudin, AA (2018) Effects of glycerol and chestnut tannin addition in cassava leaves (Manihot esculenta Crantz) on silage quality and in vitro rumen fermentation profiles. Journal of Applied Animal Research 46, 12071213.CrossRefGoogle Scholar
Theodorou, MK, Williams, BA, Dhanoa, MS, McAllan, AB and Franc, J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48, 185197.CrossRefGoogle Scholar
Tilley, JMA and Terry, RA (1963) A two-stage technique for the in vitro digestion of forage crops. The Journal of the British Grassland Society 18, 104111.CrossRefGoogle Scholar
Tomich, TR, Pereira, LGR, Gonçalves, LC, Tomich, RGP and Borges, I (2003) Características Químicas Para Avaliação do Processo Fermentativo: Uma Proposta Para Qualificação da Fermentação. Corumbá: Embrapa Pantanal. 20p.Google Scholar
Van Soest, PJ (1994) Nutritional Ecology of the Ruminant, 2nd Edn. Ithaca: Cornell University Press, p. 476.CrossRefGoogle Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Vasta, V, Daghio, M, Cappucci, A, Buccioni, A, Serra, A, Viti, C and Mele, M (2018) Invited review: plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: experimental evidence and methodological approaches. Journal Dairy Science 102, 37813804.CrossRefGoogle Scholar
Voltolini, TV, Belem, KVJ, Araújo, GGL, Moraes, AS, Gois, GC and Campos, FS (2019) Quality of leucaena, gliricidia, and pornunça silages with different old man saltbush levels. Semina: Ciências Agrárias 40, 23632374.Google Scholar
Xue, Z, Wang, Y, Yang, H, Li, S and Zhang, Y (2020) Silage fermentation and in vitro degradation characteristics of orchard grass and alfalfa intercrop mixtures as influenced by forage ratios and nitrogen fertilizing levels. Sustainability 12, 125.CrossRefGoogle Scholar