Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T02:35:22.824Z Has data issue: false hasContentIssue false

Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization

Published online by Cambridge University Press:  22 December 2015

T. J. SALO*
Affiliation:
Natural Resources Institute Finland, 31600 Jokioinen, Finland
T. PALOSUO
Affiliation:
Natural Resources Institute Finland, 50100 Mikkeli, Finland
K. C. KERSEBAUM
Affiliation:
Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Systems Analysis, Eberswalder Straße 84, 15374 Müncheberg, Germany
C. NENDEL
Affiliation:
Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Systems Analysis, Eberswalder Straße 84, 15374 Müncheberg, Germany
C. ANGULO
Affiliation:
University of Bonn, Institute of Crop Science and Resource Conservation, Katzenburgweg 5, 53115 Bonn, Germany
F. EWERT
Affiliation:
University of Bonn, Institute of Crop Science and Resource Conservation, Katzenburgweg 5, 53115 Bonn, Germany
M. BINDI
Affiliation:
DISPAA, Department of Agri-food Production and Environmental Sciences, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
P. CALANCA
Affiliation:
Agroscope Reckenholz-Tänikon ART, 8046 Zurich, Switzerland
T. KLEIN
Affiliation:
Agroscope Reckenholz-Tänikon ART, 8046 Zurich, Switzerland
M. MORIONDO
Affiliation:
National Research Council of Italy, IBIMET-CNR, Institute of Biometeorology, via Caproni 8, 50145 Florence, Italy
R. FERRISE
Affiliation:
DISPAA, Department of Agri-food Production and Environmental Sciences, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
J. E. OLESEN
Affiliation:
Department of Agroecology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
R. H. PATIL
Affiliation:
Department of Agroecology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark Department of Agronomy, University of Agricultural Sciences, 580005 Dharwad, India
F. RUGET
Affiliation:
INRA, UMR 1114 EMMAH Environement et Agronomie, F-84000, Avignon, France
J. TAKÁČ
Affiliation:
National Agricultural and Food Centre – Soil Science and Conservation Research Institute, Gagarinova 10, 827 13 Bratislava, Slovak Republic
P. HLAVINKA
Affiliation:
Global Change Research Centre AS CR, v.v.i., Bělidla 986/4a, 603 00 Brno, Czech Republic Institute of Agrosystems and Bioclimatology, Mendel University in Brno, Zemedelska 1, Brno 613 00, Czech Republic
M. TRNKA
Affiliation:
Global Change Research Centre AS CR, v.v.i., Bělidla 986/4a, 603 00 Brno, Czech Republic Institute of Agrosystems and Bioclimatology, Mendel University in Brno, Zemedelska 1, Brno 613 00, Czech Republic
R. P. RÖTTER
Affiliation:
Natural Resources Institute Finland, 50100 Mikkeli, Finland
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area index (LAI) and yield observations. The models were then tested against new data for 2009 and their performance was assessed and compared with both the two calibration years and the test year. For the calibration period, root mean square error between measurements and simulated grain dry matter yields ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi-model mean could not correct systematic errors in model simulations. Variation in soil N mineralization and LAI development due to differences in weather not captured by the models most likely was the main reason for their unsatisfactory performance. This suggests the need for model improvement in soil N mineralization as a function of soil temperature and moisture. Furthermore, specific weather event impacts such as low temperatures after emergence in 2009, tending to enhance tillering, and a high precipitation event just before harvest in 2008, causing possible yield penalties, were not captured by any of the models compared in the current study.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahamsen, P. & Hansen, S. (2000). Daisy: an open soil-crop-atmosphere system model. Environmental Modelling & Software 15, 313330.Google Scholar
Addiscott, T. M. & Whitmore, A. P. (1991). Simulation of solute leaching in soils of differing permeabilities. Soil Use and Management 7, 94102.CrossRefGoogle Scholar
Anwar, M. R., O'Leary, G. J., Rab, M. A., Fisher, P. D. & Armstrong, R. D. (2009). Advances in precision agriculture in south-eastern Australia. V. management zones. Crop and Pasture Science 60, 901911.Google Scholar
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P. J., Rötter, R. P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt, L. A., Ingwersen, J., Izaurralde, R. C., Kersebaum, K. C., Mueller, C., Naresh Kumar, S., Nendel, C., O'Leary, G., Olesen, J. E., Osborne, T. M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M. A., Shcherbak, I., Steduto, P., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., Wallach, D., White, J. W., Williams, J. R. & Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change 3, 827832.Google Scholar
Baxter, S. J., Oliver, M. A. & Gaunt, J. (2003). A geostatistical analysis of the spatial variation of soil mineral nitrogen and potentially available nitrogen within an arable field. Precision Agriculture 4, 213226.Google Scholar
BBCH (Biologische Bundesanstallt Für Land-Und Forstwirtschaft) (1997). Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph. Berlin: Blackwell Wissenschafts-Verlag.Google Scholar
Berntsen, J., Hauggard-Nielsen, H., Olesen, J. E., Petersen, B. M., Jensen, E. S. & Thomsen, A. (2004). Modelling dry matter production and resource use in intercrops of pea and barley. Field Crops Research 88, 6983.CrossRefGoogle Scholar
Borg, G. C., Jansson, P. E. & Linden, B. (1990). Simulated and measured nitrogen conditions in a manured and fertilised soil. Plant and Soil 121, 251267.CrossRefGoogle Scholar
Burns, I. G. (1974). A model for predicting the redistribution of salts applied to fallow soils after excess rainfall or evaporation. Journal of Soil Science 25, 165178.Google Scholar
Cannavo, P., Recous, S., Parnaudeau, V. & Reau, R. (2008). Modeling N dynamics to assess environmental impacts of cropped soils. Advances in Agronomy 97, 131174.CrossRefGoogle Scholar
Carter, T. R. (2013). Multi-model yield projections. Nature Climate Change 3, 784786.Google Scholar
Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. (2003). Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources 28, 315358.Google Scholar
Corre-Hellou, G., Faure, M., Launay, M., Brisson, N. & Crozat, Y. (2009). Adaptation of the STICS intercrop model to simulate crop growth and N accumulation in pea-barley intercrops. Field Crops Research 113, 7281.Google Scholar
de Wit, C. T. (1965). Photosynthesis of Leaf Canopies. Verslagen Landbouwkundige Onderzoekingen (Agricultural Research Reports) 663. Wageningen, The Netherlands: Pudoc.Google Scholar
Dessureault-Rompré, J., Zebarth, B. J., Burton, D. L., Gregorich, E. G., Goyer, C., Georgallas, A. & Grant, C. A. (2013). Are soil mineralizable nitrogen pools replenished during the growing season in agricultural soils? Soil Science Society of America Journal 77, 512524.CrossRefGoogle Scholar
Diekkrüger, B., Söndgerath, D., Kersebaum, K. C. & McVoy, C. W. (1995). Validity of agroecosystem models a comparison of results of different models applied to the same data set. Ecological Modelling 81, 329.Google Scholar
Dobermann, A., Dawe, D., Roetter, R. P. & Cassman, K. G. (2000). Reversal of rice yield decline in a long-term continuous cropping experiment. Agronomy Journal 92, 633643.CrossRefGoogle Scholar
Donatelli, M., Stöckle, C., Ceotto, E. & Rinaldi, M. (1997). Evaluation of CropSyst for cropping systems at two locations of northern and southern Italy. European Journal of Agronomy 6, 3545.CrossRefGoogle Scholar
Doltra, J., Lægdsmand, M. & Olesen, J. E. (2011). Cereal yield and quality as affected by nitrogen availability in organic and conventional arable crop rotations: a combined modeling and experimental approach. European Journal of Agronomy 34, 8395.Google Scholar
Doltra, J., Laegsmand, M. & Olesen, P. (2014). Impacts of projected climate change on productivity and nitrogen leaching of crop rotations in arable and pig farming systems in Denmark. Journal of Agricultural Science, Cambridge 152, 7592.Google Scholar
Eitzinger, J., Trnka, M., Hösch, J., Žalud, Z. & Dubrovsky, M. (2004). Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modelling 171, 223246.Google Scholar
Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., Bindi, M., Palosuo, T., Rötter, R., Kersebaum, K. C., Olesen, J. E., Patil, R. H., Saylan, L., Çaldag, B. & Çaylak, O. (2013). Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. Journal of Agricultural Science, Cambridge 151, 813835.Google Scholar
Farkas, C., Ristolainen, A. & Alakukku, L. (2006). Spatial variation of soil properties affecting yield. Cereal Research Communications 34, 155158.Google Scholar
Finnish Ministry of Agriculture and Forestry (2007). The Rural Development Programme for Mainland Finland 2007–2013. Helsinki: Finnish Ministry of Agriculture and Forestry.Google Scholar
Franko, U., Puhlmann, M., Kuka, K., Böhme, F. & Merbach, I. (2007). Dynamics of water, carbon and nitrogen in an agricultural used Chernozem soil in Central Germany. In Modelling Water and Nutrient Dynamics in Soil-Crop Systems (Eds Kersebaum, K. C., Hecker, J.-M., Mirschel, W. & Wegehenkel, M.), pp. 245258. Dordrecht, The Netherlands: Springer.Google Scholar
Goudriaan, J. (1977). Crop Micrometeorology: A Simulation Study. Simulation Monographs. Wageningen, The Netherlands: Pudoc, Wageningen.Google Scholar
Guntinas, M. E., Leiros, M. C., Trasar-Cepeda, C. & Gil-Sotres, F. (2012). Effects of moisture and temperature on net soil nitrogen mineralization: a laboratory study. European Journal of Soil Biology 48, 7380.Google Scholar
Hakala, K., Jauhiainen, L., Himanen, S. J., Rötter, R., Salo, T. & Kahiluoto, H. (2012). Sensitivity of barley varieties to weather in Finland. Journal of Agricultural Science, Cambridge 150, 145160.Google Scholar
Hansen, S. (2000). DAISY, a Flexible Soil-Plant-Atmosphere System Model. Equation Section 1. Copenhagen: The Royal Veterinary and Agricultural University.Google Scholar
Hansen, S., Jensen, H. E., Nielsen, N. E. & Svendsen, H. (1990). DAISY: A Soil Plant System Model. Danish Simulation Model for Transformation and Transport of Energy and Matter in the Soil-Plant-Atmosphere System. Copenhagen: National Agency for Environmental Protection.Google Scholar
Hay, R. K. M. & Porter, J. R. (2006). The Physiology of Crop Yield, 2nd edn, Oxford: Blackwell publishing.Google Scholar
Hlavinka, P., Eitzinger, J., Smutný, V., Thaler, S., Žalud, Z., Rischbeck, P. & Kren, J. (2010). The performance of CERES-Barley and CERES-Wheat under various soil conditions and tillage practices in Central Europe. Die Bodenkultur 61, 517.Google Scholar
Hlavinka, P., Trnka, M., Kersebaum, K. C., ČermÁk, P., PohankovÁ, E., OrsÁg, M., PokornÝ, E., Fischer, M., BrtnickÝ, M. & Žalud, Z. (2014). Modelling of yields and soil nitrogen dynamics for crop rotations by HERMES under different climate and soil conditions in the Czech Republic. Journal of Agricultural Science, Cambridge 152, 188204.CrossRefGoogle Scholar
Håkansson, I., Myrbeck, Å. & Etana, A. (2002). A review of research on seedbed preparation for small grains in Sweden. Soil and Tillage Research 64, 2340.Google Scholar
Hyytiäinen, K., Niemi, J. K., Koikkalainen, K., Palosuo, T. & Salo, T. (2011). Adaptive optimization of crop production and nitrogen leaching abatement under yield uncertainty. Agricultural Systems 104, 634644.CrossRefGoogle Scholar
Janssen, B. H., Guiking, F. C. T., van der Eijk, D., Smaling, E. M. A., Wolf, J. & van Reuler, H. (1990). A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma 46, 299318.CrossRefGoogle Scholar
Jansson, P-E. & Karlberg, L. (2012). Coupled Heat and Mass Transfer Model for Soil-Plant Atmosphere Systems. Stockholm: Royal Institute of Technology, Department of Civil and Environmental Engineering.Google Scholar
Jansson, P-E. & Thoms-Hjärpe, C. (1986). Simulated and measured soil water dynamics of unfertilized and fertilized barley. Acta Agriculturae Scandinavica 36, 162172.Google Scholar
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., Wang, E., Brown, S., Bristow, K. L., Asseng, S., Chapman, S., McCown, R. L., Freebairn, D. M. & Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18, 267288.Google Scholar
Kersebaum, K. C. (2007). Modelling nitrogen dynamics in soil–crop systems with HERMES. Nutrient Cycling in Agroecosystems 77, 3952.Google Scholar
Kersebaum, K. C., Lorenz, K., Reuter, H. I., Schwarz, J., Wegehenkel, M. & Wendroth, O. (2005). Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes. Physics and Chemistry of the Earth, Parts A/B/C 30, 5967.CrossRefGoogle Scholar
Kersebaum, K. C., Hecker, J-M., Mirschel, W. & Wegehenkel, M. (2007). Modelling water and nutrient dynamics in soil–crop systems: A comparison of simulation models applied on common data sets. In Modelling Water and Nutrient Dynamics in Soil–Crop Systems (Eds Kersebaum, K. C., Hecker, J.-M., Mirschel, W. & Wegehenkel, M.), pp. 117. Dordrecht, The Netherlands: Springer.Google Scholar
Knutti, R. (2010). The end of model democracy? An editorial comment. Climatic Change 102, 395404.CrossRefGoogle Scholar
Launay, M., Brisson, N., Satger, S., Hauggaard-Nielsen, H., Corre-Hellou, G., Kasynova, E., Ruske, R., Jensen, E. S. & Gooding, M. J. (2009). Exploring options for managing strategies for pea-barley intercropping using a modeling approach. European Journal of Agronomy 31, 8598.Google Scholar
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., Boote, K. J., Ruane, A. C., Thorburn, P. J., Cammarano, D., Hatfield, J. L., Rosenzweig, C., Aggarwal, P. K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Challinor, A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt, L. A., Ingwersen, J., Izaurralde, R. C., Kersebaum, K. C., Müller, C., Naresh Kumar, S., Nendel, C., O'Leary, G., Olesen, J. E., Osborne, T. M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M. A., Shcherbak, I., Steduto, P., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., White, J. W. & Wolf, J. (2015). Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology 21, 911925.Google Scholar
Monteith, J. L. (1981). Climatic variation and the growth of crops. Quarterly Journal of the Royal Meteorological Society 107, 749774.Google Scholar
Mäkelä, P. & Muurinen, S. (2012). Uniculm and conventional tillering barley accessions under northern growing conditions. Journal of Agricultural Science, Cambridge 150, 335344.Google Scholar
Nendel, C., Berg, M., Kersebaum, K. C., Mirschel, W., Specka, X., Wegehenkel, M., Wenkel, K. O. & Wieland, R. (2011). The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecological Modelling 222, 16141625.Google Scholar
Nendel, C., Venezia, A., Piro, F., Ren, T., Lillywhite, R. D. & Rahn, C. R. (2013). The performance of the EU-Rotate_N model in predicting the growth and nitrogen uptake of rotations of field vegetable crops in a Mediterranean environment. Journal of Agricultural Science, Cambridge 151, 538555.Google Scholar
Novem Auyeung, D. S., Suseela, V. & Dukes, J. S. (2013). Warming and drought reduce temperature sensitivity of nitrogen transformations. Global Change Biology 19, 662676.Google Scholar
Nykänen, A., Salo, T. & Granstedt, A. (2009). Simulated cereal nitrogen uptake and soil mineral nitrogen after clover-grass leys. Nutrient Cycling in Agroecosystems 85, 115.Google Scholar
Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., Patil, R. H., Ruget, F., Rumbaur, C., Takac, J., Trnka, M., Bindi, M., Caldag, B., Ewert, F., Ferrise, R., Mirschel, W., Saylan, L., Siska, B. & Rötter, R. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European Journal of Agronomy 35, 103114.Google Scholar
Patil, R. H., Lægdsmand, M., Olesen, J. E. & Porter, J. R. (2012). Sensitivity of crop yield and N losses in winter wheat to changes in mean and variability of temperature and precipitation in Denmark using the FASSET model. Acta Agriculturae Scandinavica. Section B: Plant and Soil 62, 335351.Google Scholar
Peltonen-Sainio, P., Muurinen, S., Rajala, A. & Jauhiainen, L. (2008). Variation in harvest index of modern spring barley, oat and wheat cultivars adapted to northern growing conditions. Journal of Agricultural Science, Cambridge 146, 3547.Google Scholar
Peltonen-Sainio, P., Jauhiainen, L., Rajala, A. & Muurinen, S. (2009). Tiller traits of spring cereals under tiller-depressing long day conditions. Field Crops Research 113, 8289.Google Scholar
Petersen, S. O., Schjønning, P., Olesen, J. E., Christensen, S. & Christensen, B. T. (2013). Sources of nitrogen for winter wheat in organic cropping systems. Soil Science Society of America Journal 77, 155165.Google Scholar
Pietola, L. & Tanni, R. (2003). Response of seedbed physical properties, soil N and cereal growth to peat application during transition to conservation tillage. Soil and Tillage Research 74, 6579.Google Scholar
Pietola, L., Tanni, R. & Elonen, P. (1999). Responses of yield and N use of spring sown crops to N fertilization, with special reference to the use of plant growth regulators. Agricultural and Food Science in Finland 8, 423440.CrossRefGoogle Scholar
Probert, M. E., Dimes, J. P., Keating, B. A., Dalal, R. C. & Strong, W. M. (1998). APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agricultural Systems 56, 128.Google Scholar
Rahn, C. R., Zhang, K., Lillywhite, R., Ramos, C., Doltra, J., de Paz, J. M., Riley, H., Fink, M., Nendel, C., Thorup-Kristensen, K., Pedersen, A., Piro, F., Venezia, A., Firth, C., Schmutz, U., Rayns, F. & Strohmeyer, K. (2010). EU-Rotate_N – a decision support system – to predict environmental and economic consequences of the management of nitrogen fertiliser in crop rotations. European Journal of Horticultural Science 75, 2032.Google Scholar
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics: A Journal of General and Applied Physics, American Physical Society 1, 318333.Google Scholar
Ros, G. H., Hanegraaf, M. C., Hoffland, E. & van Riemsdijk, W. H. (2011). Predicting soil N mineralization: relevance of organic matter fractions and soil properties. Soil Biology and Biochemistry 43, 17141722.Google Scholar
Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. (2011 a). Crop-climate models need an overhaul. Nature Climate Change 1, 175177.Google Scholar
Rötter, R. P., Palosuo, T., Pirttioja, N. K., Dubrovsky, M., Salo, T., Fronzek, S., Aikasalo, R., Trnka, M., Ristolainen, A. & Carter, T. R. (2011 b). What would happen to barley production in Finland if global warming exceeded 4 °C? A model-based assessment. European Journal of Agronomy 35, 205214.Google Scholar
Rötter, R. P., Palosuo, T., Kersebaum, K. C., Angulo, C., Bindi, M., Ewert, F., Ferrise, R., Hlavinka, P., Moriondo, M., Nendel, C., Olesen, J. E., Patil, R. H., Ruget, F., Takac, J. & Trnka, M. (2012). Simulation of spring barley yield in different climatic zones of Northern and Central Europe: a comparison of nine crop models. Field Crops Research 133, 2336.Google Scholar
Rötter, R. P., Höhn, J., Trnka, M., Fonzek, S., Carter, T. R. & Kahiluoto, H. (2013). Modelling shifts in agroclimate and crop cultivar response under climate change. Ecology and Evolution 3, 41974214.CrossRefGoogle ScholarPubMed
Sapkota, T. B., Askegaard, M., Laegdsmand, M. & Olesen, J. E. (2012). Effects of catch crop type and root depth on nitrogen leaching and yield of spring barley. Field Crops Research 125, 129138.CrossRefGoogle Scholar
Schabenberger, O. & Pierce, F. J. (2002). Contemporary Statistical Models for the Plant and Soil Sciences. Boca Raton, FL: CRC Press.Google Scholar
Setiyono, T. D., Yang, H., Walters, D. T., Dobermann, A., Ferguson, R. B., Roberts, D. F., Lyon, D. J., Clay, D. E. & Cassman, K. G. (2011). Maize-N. A decision tool for nitrogen management in maize. Agronomy Journal 103, 12761283.Google Scholar
Shaffer, M. J. (2002). Nitrogen modeling for soil management. Journal of Soil and Water Conservation 57, 417425.Google Scholar
Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D. S., Jensen, L. S., Kelly, R. H., Klein-Gunnewiek, H., Komarov, A. S., Li, C., Molina, J. A. E., Mueller, T., Parton, W. J., Thornley, J. H. M. & Whitmore, A. P. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153225.Google Scholar
Stöckle, C. O., Donatelli, M. & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy 18, 289307.Google Scholar
Strauss, F., Schmid, E., Moltchanova, E., Formayer, H. & Wang, X. (2012). Modeling climate change and biophysical impacts of crop production in the Austrian Marchfeld Region. Climatic Change 111, 641664.CrossRefGoogle Scholar
Stuart, M. E., Gooddy, D. C., Bloomfield, J. P. & Williams, A. T. (2011). A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Science of the Total Environment 409, 28592873.Google Scholar
Sutton, M. A., Erisman, J. W., Leip, A., van Grinsven, H. & Winiwarter, W. (2011). Too much of a good thing. Nature 472, 159161.Google Scholar
Trnka, M., Dubrovsky, M. & Zalud, Z. (2004). Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Climatic Change 64, 227255.Google Scholar
Valkama, E., Salo, T., Esala, M. & Turtola, E. (2013). Nitrogen balances and yields of spring cereals as affected by nitrogen fertilization in northern conditions: a meta-analysis. Agriculture, Ecosystems and Environment 164, 113.CrossRefGoogle Scholar
Van Oort, P. A. J., Timmermans, B. G. H., Meinke, H. & van Ittersum, M. K. (2012). Key weather extremes affecting potato production in The Netherlands. European Journal of Agronomy 37, 1122.Google Scholar
Wheeler, T. & von Braun, J. (2013). Climate change impacts on global food security. Science 341, 508513.Google Scholar
Williams, J. R. (1995). The EPIC model, 1995. In Computer Models of Watershed Hydrology (Ed. Singh, V. P.), pp. 9091000. Highlands Ranch, CO: Water Resources Publications.Google Scholar
Willmott, C. J. (1981). On the validation of models. Physical Geography 2, 184194.Google Scholar
Wolf, J., Hack-ten Broeke, M. J. D. & Rötter, R. P. (2005). Simulation of nitrogen leaching in sandy soils in the Netherlands with the ANIMO model and the integrated modelling system STONE. Agriculture, Ecosystems and Environment 105, 523540.Google Scholar
Yli-Halla, M. & Mokma, D. L. (2001). Soils in an agricultural landscape of Jokioinen, south-western Finland. Agriculture and Food Science in Finland 10, 3343.Google Scholar