Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T11:00:05.918Z Has data issue: false hasContentIssue false

Circadian rhythm in wool depilation force in Merino and Merino X Border Leicester sheep

Published online by Cambridge University Press:  27 March 2009

A. Foldes
Affiliation:
Divisions of Animal Production
J. B. Donnelly
Affiliation:
Mathematics and Statistics, CSIRO, P. O. Box 239, Blacktown, N. S. W. 2148, Australia
C. A. Maxwell
Affiliation:
Divisions of Animal Production
S. B. James
Affiliation:
Divisions of Animal Production
S. L. Clancy
Affiliation:
Mathematics and Statistics, CSIRO, P. O. Box 239, Blacktown, N. S. W. 2148, Australia

Summary

As part of an ongoing investigation of ovine neuroendocrine mechanisms relating to photoperiod and eventually to wool growth, the diurnal variation of depilation force (an index of the strength of attachment of wool fibres to the skin of sheep) was investigated in Merino wethers and Border Leicester Merino ewes. Circadian rhythms were demonstrated in depilation force in both ewes and wethers. Further experiments were performed to investigate circadian endocrine rhythms which may have some bearing on the observed rhythm in depilation force. Circadian rhythms 180° out of phase with the depilation force rhythm were observed in plasma cortisol concentrations and in pineal serotonin N-acetyltransferase activities in Merino wethers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrell, G. K. & Lapwood, K. R. (1978). Effects of pinealectomy of rams on secretory profiles of luteinizing hormone, testosterone, prolactin and cortisol. Neuroendocrinology 27, 216227.CrossRefGoogle ScholarPubMed
Binkley, S. (1981). Pineal biochemistry: comparative aspects and circadian rhythms. In The Pineal Gland vol. 1. Anatomy and Biochemistry (ed. Reiter, R. J.), pp. 155172. Florida, U. S. A.: CRC Press.Google Scholar
Broad, T. E., Sedcole, J. R. & Ngan, A. S. (1983). Incorporation of glucose into lipid of perirenal and subcutaneous adipocytes of rats and sheep: influence of insulin. Australian Journal of Biological Sciences 36, 147156.CrossRefGoogle ScholarPubMed
Brownstein, M. & Axelrod, J. (1974). Pineal gland: 24-hour rhythm in norepinephrine turnover. Science 184, 163164.CrossRefGoogle ScholarPubMed
Cardinali, D. P. (1981). Molecular biology of melatonin: assessment of the ‘microtubule hypothesis of melatonin action’. Advances in the Biosciences 29, 247256.Google Scholar
Cardinali, D. P. & Vacas, M. I. (1978). Feedback control of pineal function by reproductive hormones - a neuroendocrine paradigm. Journal of Neural Transmission Supplement 13, 175201.Google Scholar
Chapman, R. E. & Bassett, J. M. (1970). The effects of prolonged administration of cortisol in the skin of sheep on different planes of nutrition. Journal of Endocrinology 48, 649663.CrossRefGoogle ScholarPubMed
Chapman, R. E., Panaretto, B. A. & Frith, P. A. (1982). Changes in wool follicles of sheep following administration of dexamethasone trimethylacetate. Journal of Cell Science 53, 13231335.CrossRefGoogle Scholar
Foldes, A., Maxwell, C. A., Hinks, N. T., Hoskinson, R. M. & Scaramuzzi, R. J. (1982). Effects of steroids on β-adrenergic binding sites in sheep pineal glands. Biochemical Pharmacology 31, 13691374.CrossRefGoogle ScholarPubMed
Foldes, A., Maxwell, C. A., Mc Donald, B. J., Hoskinson, R. M., Hinks, N. T. & Hopkins, P. S. (1984). Response of pineal β-adrenoceptors in different breeds of sheep to immunization against selected steroids. Biochemical Pharmacology 33, 25812586.CrossRefGoogle ScholarPubMed
Fulkerson, W. J. & Tang, B. Y. (1979). Ultradian and circadian rhythms in the plasma concentration of cortisol in sheep. Journal of Endocrinology 81, 135141.CrossRefGoogle ScholarPubMed
Gordon, A. J. (1980). The measurement of, and factors affecting, the strength of attachment of wool to the skin of sheep. Australian Journal of Experimental Agriculture and Animal Husbandry 20, 4049.CrossRefGoogle Scholar
Gordon, A. J. (1981). The effect of body condition on the defieecing response of sheep to dosing with cyclophosphamide or glycocorticoids. Proceedings of the Second National Conference on ‘Wool Harvesting Research and Development’ (AWHCON 81) (ed. Hudson, P. R. W.), pp. 7174. Sydney: Australian Wool Corporation.Google Scholar
Gordon, A. J. & Pallister, E. (1981). A hand-held device for the rapid measurement of wool staple thickness. Journal of the Textile Institute 72, 145146.CrossRefGoogle Scholar
Halberg, F., Carandente, F., Cornélissen, G. & Katinas, G. S. (1977). Glossary of chronobiology. Chronobiologia 4 (1), 190.Google ScholarPubMed
Holley, D. C., Beckman, D. A. & Evans, J. W. (1975). Effect of confinement on the circadian rhythm of ovine cortisol. Journal of Endocrinology 65, 147148.CrossRefGoogle ScholarPubMed
Kennaway, D. J., Frith, R. G., Phillipou, G., Matthews, C. D. & Seamark, R. F. (1977). A specific radioimmunoassay for melatonin in biological tissue and fluids, and its validation by Gas Chromatography -Mass Spectrometry. Endocrinology 101, 119127.CrossRefGoogle ScholarPubMed
Kennaway, D. J., Gilmore, T. A. & Seamark, R. F. (1982). Effects of melatonin implants on the circadian rhythm of plasma melatonin and prolactin in sheep. Endocrinology 110, 21862188.CrossRefGoogle ScholarPubMed
Kennaway, D. J., Obst, J. M., Dunstan, E. A. & Friesen, H. G. (1981). Ultradian and seasonal rhythms in plasma gonadotropins, prolactin, cortisol and testosterone in pinealectomized rams. Endocrinology 108, 639646.CrossRefGoogle ScholarPubMed
Klein, D. C., Berg, G. R. & Weller, J. L. (1970). Melatonin synthesis: adenosine 3',5'-monophosphate and norepinephrine stimulate N-acetyltransferase. Science 168, 979980.CrossRefGoogle ScholarPubMed
Klein, D. C. & Weller, J. L. (1970). Indole metabolism in the pineal gland: a circadian rhythm in Nacetyltransferase. Science 169, 10931095.CrossRefGoogle ScholarPubMed
Lincoln, G. A., Klandorf, H. & Anderson, N. (1980). Photoperiodic control of thyroid function and horn growth in rams, and the effect of cranial sympathectomy. Endocrinology 107, 15431548.CrossRefGoogle ScholarPubMed
Lindner, H. R. & Ferguson, K. A. (1956). Influence of the adrenal cortex on wool growth and its relation to ‘break’ and ‘tenderness’ of the fleece. Nature, London 177, 188189.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Lynch, G. R. & Epstein, A. L. (1976). Melatonin induced changes in gonads; pelage and thermogenic characters in the white-footed mouse, Peromyscus leucopus. Comparative Biochemistry and Physiology 53C, 6768.Google ScholarPubMed
Martin, C. E., Hartmann, P. E. & Gooneratne, A. (1978). Progesterone and corticosteroids in the initiation of lactation in the sow. Australian Journal of Biological Sciences 31, 517525.CrossRefGoogle ScholarPubMed
Morgan, W. W., Reiter, R. J. & Pfeil, K. A. (1976). Hamster pineal noradrenaline: levels over a regulated lighting period and the influence of superior cervical ganglionectomy. Life Sciences 19, 437440.CrossRefGoogle Scholar
Nelson, W., Tong, Y. L., Lee, J. K. & Halberg, F. (1979). Methods for cosinor-rhythmometry. Chronobiologia 6 (4), 305323.Google ScholarPubMed
Panaretto, B. A., Leish, Z. & Donnelly, J. B. (1982). Some effects of dexamethasone on nucleic acid metabolism in skin of Merino sheep. Australian Journal of Biological Sciences 35, 579593.CrossRefGoogle ScholarPubMed
Plotka, E. D., Seal, U. S., Letellier, M. A., Verme, L. J. & Ozoga, J. J. (1981). The effect of pinealectomy on seasonal phenotypic changes in whitetailed deer (Adocoileus virginianus borealis). In Pineal Function (ed. Matthews, C. D. and Seamark, R. F.), pp. 4566. Amsterdam: Elsevier-North Holland.Google Scholar
Rivest, R. W. & Wurtman, R. J. (1981). New trends and perspectives in melatonin research. In Melatonin: Current Status and Perspectives (ed. Birau, N. and Schloot, W.), pp. 8993. Oxford: Pergamon Press.CrossRefGoogle Scholar
Rollag, M. D. & Niswender, G. D. (1976). Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens. Endocrinology 98, 482489.CrossRefGoogle ScholarPubMed
Romero, J. A., Zatz, M., Kebabian, J. W. & Axelrod, J. (1975). Circadian cycles in binding of 3H-alprenolol to β-adrenergic receptor sites in rat pineal. Nature 258, 435436.CrossRefGoogle ScholarPubMed
Royston, J. P. (1982). Algorithm AS181. The W test for normality. Applied Statistics 31, 176180.CrossRefGoogle Scholar
Rust, C. C. & Meyer, R. K. (1969). Hair color, molt, and testis size in male, short tailed weasels treated with melatonin. Science 165, 921922.CrossRefGoogle ScholarPubMed
Tong, Y. L. (1976). Parameter estimation in studying circadian rhythms. Biometrics 32, 8594.CrossRefGoogle ScholarPubMed
Willcox, D. L., Arthur, P. G., Hartmann, P. E. & Whitely, J. L. (1983). Perinatal changes in plasma oestradiol-17β, cortisol and progesterone and the initiation of lactation in sows. Australian Journal of Biological Sciences 36, 173181.CrossRefGoogle ScholarPubMed
Williams, A. H. (1981). Some observations of the involvement of the pineal gland in the control of natural wool shedding by Wiltshire Horn sheep. In Proceedings of the Second National Conference on Wool Harvesting Research and Development (A WHCON 81) (ed. Hudson, P. R. W.), pp. 3740. Sydney: Australian Wool Corporation.Google Scholar