Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T18:16:13.808Z Has data issue: false hasContentIssue false

Chemical stabilization of organic carbon in agricultural soils in a semi-arid region (SE Spain)

Published online by Cambridge University Press:  11 May 2015

M. SIERRA*
Affiliation:
Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain
F. J. MARTÍNEZ
Affiliation:
Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain
V. BRAOJOS
Affiliation:
Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain
A. ROMERO-FREIRE
Affiliation:
Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain
I. ORTIZ-BERNAD
Affiliation:
Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain
F. J. MARTÍN
Affiliation:
Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Land use and management, together with soil properties, determine soil organic carbon (SOC) concentration and its stabilization mechanisms. Four soils (0–30 cm depth) were studied in a semi-arid region with different uses and management regimes: two soils with olive cultivation, both under a non-tillage regime and one with a cover crop (OCC) and the other without (ONT); a fluvial terrace soil (FT) with cereal–sunflower–fallow rotation; and an unaltered soil under natural vegetation (oak trees; OT). The OT soil had a higher SOC concentration than the agricultural soils (OCC, ONT and FT), followed by the FT soil without significant differences. The olive grove soils had a lower SOC concentration but the two types of management differed significantly, with higher concentrations due to the cover crop. Hydrofluoric acid (HF)-soluble, hydrochloric acid (HCl)-resistant, and non-oxidizable (sodium peroxodisulphate; Na2S2O8) SOC fractions were determined at different depths (0–5, 5–10, 10–20 and 20–30 cm). The relative HCl-resistant and non-oxidizable SOC fractions increased with depth, whereas the relative HF-soluble SOC fraction varied slightly among the four soils considered. Differences in the SOC-stabilization mechanism were found according to the chemical SOC fractionation. In the FT and OT soils, where HF-soluble SOC and soil respiration rates were higher, the intense biological activity rapidly degraded the plant debris, being partially fixed and stabilized by the fine mineral-soil fraction as the principal stabilization mechanism of SOC. The olive grove soils had lower biological activity but higher SOC resistance to oxidation with Na2S2O8, thus suggesting that chemical recalcitrance of soil organic matter was a relevant stabilization mechanism in these soils.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashagrie, Y., Zech, W., Guggenberger, G. & Mamo, T. (2007). Soil aggregation and total and particulate organic matter following conversion of native forest to continuous cultivation in Ethiopia. Soil and Tillage Research 94, 101108.CrossRefGoogle Scholar
Baldock, J. A., Masiello, C. A., Gélinas, Y. & Hedges, J. I. (2004). Cycling and composition of organic matter in terrestrial and marine ecosystems. Marine Chemistry 92, 3964.CrossRefGoogle Scholar
Barahona, E. (1984). Determinación de carbonatos totales y caliza activa. Grupo de trabajo de normalización de métodos analíticos. In I Congreso Nacional de la Ciencia del Suelo, pp. 5367. Madrid, Spain: Sociedad Española de la Ciencia del Suelo.Google Scholar
Bing-Ru, L., Guo-Mei, J., Jian, C. & Gang, W. (2006). A review of methods for studying microbial diversity in soils. Pedosphere 16, 1824.Google Scholar
Butler, A., Meir, P., Saiz, G., Maracahipes, L., Schwantes-Marimon, B. & Grace, J. (2012). Annual variation in soil respiration and its component part in two structurally contrasting woody Savannas in Central Brazil. Plant and Soil 352, 129142.CrossRefGoogle Scholar
Campbell, J. L., Sun, O. J. & Law, B. E. (2004). Supply-side controls on soil respiration among Oregon forests. Global Change Biology 10, 18571869.CrossRefGoogle Scholar
Castro, J., Fernández-Ondoño, E., Rodríguez, C., Lallena, A. M., Sierra, M. & Aguilar, J. (2008). Effects of different olive-grove management systems on the organic carbon and nitrogen content of soil in Jaén (Spain). Soil and Tillage Research 98, 5667.CrossRefGoogle Scholar
Civantos, L. (2004). La olivicultura en el mundo y en España. In El Cultivo del Olivo (Eds Barranco, D., Fernández-Escobar, R. & Rallo, T.), pp. 1924. Madrid: Mundi-Prensa.Google Scholar
Collins, H. P., Elliott, E. T., Paustian, K., Bundy, L. G., Dick, W. A., Huggins, D. R., Smucker, A. J. M. & Paul, E. A. (2000). Soil carbon pools and fluxes in long-term corn belt agroecosystems. Soil Biology and Biochemistry 32, 157168.CrossRefGoogle Scholar
Cuypers, C., Grotenhuis, T., Nierop, K. G. J., Franco, E. M., de Jager, A. & Rulkens, W. (2002). Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere 48, 919931.CrossRefGoogle ScholarPubMed
Eusterhues, K., Rumpel, C., Kleber, M. & Kögel-Knabner, I. (2003). Stabilization of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry 34, 15911600.CrossRefGoogle Scholar
Eusterhues, K., Rumpel, C. & Kögel-Knabner, I. (2007). Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and Cambisol. Organic Geochemistry 38, 13561372.CrossRefGoogle Scholar
Freibauer, A., Rounsevell, M. D. A., Smith, P., Verhange, J. (2004). Carbon sequestration in the agricultural soils of Europe. Geoderma 122, 123.CrossRefGoogle Scholar
Gélinas, Y., Baldock, J. A., Hedges, J. I. (2001). Demineralization of marine and fresh water sediments for CP/MAS 13C NRM analysis. Organic Geochemistry 32, 677693.CrossRefGoogle Scholar
Gleixner, G., Poirier, N., Bol, R. & Balesdent, J. (2002). Molecular dynamics of organic matter in a cultivated soil. Organic Geochemistry 33, 357366.CrossRefGoogle Scholar
Helfrich, M., Flessa, H., Mikutta, R., Dreves, A. & Ludwig, B. (2007). Comparison of chemical fractionations methods for isolating stable soil organic carbon pools. European Journal of Soil Science 58, 13161329.CrossRefGoogle Scholar
Hernández, A. J., Lacasta, C. & Pastor, J. (2005). Effects of different management practice on soil conservation and soil water in a rainfed olive orchard. Agricultural Water Management 77, 232248.CrossRefGoogle Scholar
IUSS Working Group WRB (2014). World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No.106. Rome: FAO.Google Scholar
Jagadamma, S., Lal, R., Ussiri, D. A. N., Trumbore, S. E. & Mestelan, S. (2010). Evaluation of structural chemistry and isotopic signatures of refractory soil organic fraction isolated by wet oxidation methods. Biochemistry 98, 2944.Google Scholar
Janssens, I. A. & Pilegaard, K. (2003). Large seasonal changes in Q10 of soils respiration in a beech forest. Global Change Biology 9, 911918.CrossRefGoogle Scholar
Jha, P., De, A., Lakaria, B. L., Biswas, A. K., Singh, M., Reddy, K. S. & Rao, A. S. (2012). Soil carbon pools, mineralization and fluxes associated with land use change in Vertisols of Central India. National Academy Science Letters 35, 475483.CrossRefGoogle Scholar
Jobbágy, E. J. & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10, 423436.CrossRefGoogle Scholar
Knicker, H. (2004). Stabilization of N-compounds in soil and organic matter-rich sediments – what is the difference? Marine Chemistry 92, 167195.CrossRefGoogle Scholar
Krull, E. S., Baldock, J. A. & Skjemstad, J. O. (2003). Importance of mechanism and process of the stabilization of soil organic matter for modelling carbon turnover. Functional Plant Biology 30, 815830.CrossRefGoogle ScholarPubMed
Lal, R. (2001). Soil degradation by erosion. Land Degradation and Development 12, 519539.CrossRefGoogle Scholar
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science 126, 241259.Google Scholar
Leifeld, J. & Fuhrer, J. (2005). The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry 75, 433453.CrossRefGoogle Scholar
Lorenz, K. & Lal, R., Shipitalo, M. J. (2006). Stabilization of organic carbon in chemically separated pools in no-till and meadows soils in Northern Appalachia. Geoderma 137, 205211.CrossRefGoogle Scholar
Lorenz, K., Lal, R., Preston, C. M. & Nierop, K. G. J. (2007). Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142, 110.CrossRefGoogle Scholar
Lorenz, K., Lal, R. & Shipitalo, M. J. (2008). Chemical stabilization of organic carbon pools in particle size fractions in no-till meadow soils. Biology and Fertility of Soils 44, 10431051.CrossRefGoogle Scholar
Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E. & Guggenberger, G. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review. European Journal of Soil Science 57, 426445.CrossRefGoogle Scholar
Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E. & Marschner, B. (2007). SOM fractionation methods: relevance to functional pools and the stabilization mechanism. Soil Biology and Biochemistry 39, 21832207.CrossRefGoogle Scholar
MAAM (2013). Encuesta Sobre Superficies y Rendimientos de Cultivos. Análisis de las Plantaciones de Olivar en España. Madrid: Subdirección General de Estadística. Ministerio de Agricultura, Alimentación y Medio Ambiente.Google Scholar
Mathers, N. J., Xu, Z., Berners-Price, S. J., Perera, M. C. S. & Saffigna, P. G. (2002). Hidrofluoric acid pre-treatment for improving 13C CPMAS NMR spectral quality of forest soils in south-eastern Queensland, Australia. Australian Journal of Soil Research 10, 655674.Google Scholar
Mikutta, R., Kleber, M., Kaiser, K. & Jahn, R. (2005). Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Science Society of American Journal 69, 120135.CrossRefGoogle Scholar
Murty, D., Kirschbaum, M. U. F., McMurttrie, R. E. & McGilvray, H. (2002). Does conversion of forest to agricultural land change sol carbon and nitrogen? A review of the literature. Global Change Biology 8, 105123.CrossRefGoogle Scholar
Nieto, O. M., Castro, J. & Fernández-Ondoño, E. (2013). Conventional tillage versus cover crops in relation to carbon fixation in Mediterranean olive cultivation. Plant and Soil 365, 321335.CrossRefGoogle Scholar
Oades, J. M. (1988). The retention of organic matter in soils. Biogeochemistry 5, 3570.CrossRefGoogle Scholar
Paul, E. A., Follett, R. F., Leavitt, S. W., Halvorson, A., Peterson, G. A. & Lyon, D. J. (1997). Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Science Society of America Journal 61, 10581067.CrossRefGoogle Scholar
Paul, E. A., Collins, H. P. & Leavitt, S. W. (2001). Dynamics of resistant soil carbon of midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104, 239256.CrossRefGoogle Scholar
Raich, J. W. & Potter, C. S. (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles 9, 2336.CrossRefGoogle Scholar
Rasse, D. P., Rumpel, C. & Dignac, M. F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant and Soil 269, 341356.CrossRefGoogle Scholar
Repullo-Ruibérriz de Torres, M. A., Carbonell-Bojollo, R., Alcántara-Braña, C., Rodríguez-Lizana, A. & Ordóñez-Fernández, R. (2012). Carbon sequestration potential of residues of different types of cover crops in olive groves under Mediterranean climate. Spanish Journal of Agricultural Research 10, 649661.CrossRefGoogle Scholar
Richards, L. A. & Weaver, L. R. (1944). Moisture retention by some irrigated soils as related to soil moisture tension. Journal of Agricultural Research 69, 215235.Google Scholar
Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological reviews of the Cambridge Philosophical Society 81, 131.CrossRefGoogle ScholarPubMed
Schlesinger, W. H. (2000). Carbon sequestration in soil: some cautions amidst optimism. Agricultural Ecosystem and Environment 82, 121127.CrossRefGoogle Scholar
Soil Conservation Service (1972). Methods and Procedures for Collecting Soil Samples. Washington, DC: Soil Survey Laboratory, USDA.Google Scholar
Sposito, G., Skipper, N. T., Sutton, R., Park, S. H., Soper, A. K. & Greathose, J. A. (1999). Surface geochemistry of the clay minerals. Proceedings of the National Academy of Sciences of the United States of America 96, 33583364.CrossRefGoogle ScholarPubMed
Swanston, C. W., Torn, M. S., Hanson, P. J., Southon, J. R., Garten, C. T., Hanlon, E. M. & Ganio, L. (2005). Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment. Geoderma 128, 5262.CrossRefGoogle Scholar
Ussiri, D. A. N. & Lal, R. (2008). Method for determining coal carbon in the reclaimed minesoils contaminated with coal. Soil Science Society of American Journal 72, 231237.CrossRefGoogle Scholar
Vázquez, C., Merlo, C., Noe, L., Romero, C., Abril, A. & Carranza, C. (2013). Sustainability/resilience of soil organic matter components in an Argentinean arid region. Spanish Journal of Soil Science 3, 7377.Google Scholar
Vieira, D., Silva, M. I., Oliveira, T., Lima, T., Da Silva, N. & Silva, M. I. (2013). Soil organic matter pools and carbon fractionations in soil under different land uses. Soil and Tillage Research 126, 177182.Google Scholar
Vincent, G., Shahriari, A. R., Lucot, E., Badot, P. M. & Epron, D. (2006). Spatial and seasonal variations in soil respiration in a temperate deciduous forest with fluctuating water table. Soil Biology and Biochemistry 38, 25272535.CrossRefGoogle Scholar
Yang, M., Tian, J., Sun, C. & Zhang, X. (2011). Study on quantity of microorganism and fertility of orchard soil with different plant ages. In Proceedings of 2011 International Symposium on Water Resource and Environmental Protection vol. 4, art. no. 5893507, pp. 2995–2997. New York: IEEE.CrossRefGoogle Scholar
Zhou, Z., Zhang, Z., Zha, T., Luo, Z., Zheng, J. & Sun, O. J. (2013). Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forest of Loess Plateau in China. Soil Biology and Biochemistry 57, 135143.CrossRefGoogle Scholar