Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T12:54:18.520Z Has data issue: false hasContentIssue false

Characterization of culm morphology, anatomy and chemical composition of foxtail millet cultivars differing in lodging resistance

Published online by Cambridge University Press:  20 January 2015

B. H. TIAN*
Affiliation:
Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, People's Republic of China
L. Y. LIU
Affiliation:
Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, People's Republic of China
L. X. ZHANG
Affiliation:
Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, People's Republic of China
S. X. SONG
Affiliation:
Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, People's Republic of China
J. G. WANG
Affiliation:
Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, People's Republic of China
L. F. WU
Affiliation:
The National Key Facility for Crop Gene Resources and Genetic Improvement, (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
H. J. LI*
Affiliation:
The National Key Facility for Crop Gene Resources and Genetic Improvement, (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
*
*To whom all correspondence should be addressed. Email: [email protected]; [email protected]
*To whom all correspondence should be addressed. Email: [email protected]; [email protected]

Summary

Lodging can be an important factor in limiting yield and quality of summer foxtail millet [Setaria italica (L.) P. Beauv.]. Although lodging resistance varies among different genotypes, direct selection for lodging resistance is difficult because of its sporadic occurrence in the field and inconsistency between years. A 2-year-field study was conducted with 35 summer foxtail millet cultivars or advanced breeding lines to determine the association between lodging resistance and culm morphology, anatomy and chemical composition. Path analyses indicated that stem-breaking strength had the most important effect on the lodging coefficient. The breaking strength of stem was associated with specific morphological properties of the culm, such as greater culm diameter and most importantly culm wall thickness. Width of sclerenchyma tissue, and the number and sheath width of the large vascular bundles were the major anatomical properties that influenced stem-breaking strength. The cellulose and lignin compositions of the culm had different effects on stem-breaking strength. Cultivars with smaller lodging coefficients contained higher levels of cellulose, but lower levels of lignin than the cultivars that were more prone to lodging. The findings from the present study provide useful information on lodging-associated traits in the culm that can be used as indicators for the improvement of lodging resistance in foxtail millet.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, C. J., Berry, P. M., Spink, J. H., Sylvester-Bradley, R., Griffin, J. M., Scott, R. K. & Clare, R. W. (1998). A method for the assessment of the risk of wheat lodging. Journal of Theoretical Biology 194, 587603.CrossRefGoogle ScholarPubMed
Berry, P. M., Spink, J. H., Gay, A. P. & Craigon, J. (2003 a). A comparison of root and stem lodging risks among winter wheat cultivars. Journal of Agricultural Science, Cambridge 141, 191202.CrossRefGoogle Scholar
Berry, P. M., Spink, J., Sterling, M. & Pickett, A. A. (2003 b). Methods for rapidly measuring the lodging resistance of wheat cultivars. Journal of Agronomy and Crop Science 189, 390401.CrossRefGoogle Scholar
Crook, M. J. & Ennos, A. R. (1994). Stem and root characteristics associated with lodging resistance in four winter wheat cultivars. Journal of Agricultural Science, Cambridge 123, 167174.CrossRefGoogle Scholar
Dence, C. W. (1992). The determination of lignin. In Methods in Lignin Chemistry (Eds Lin, S. Y. & Dence, C. W.), pp. 3361. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Duan, C. R., Wang, B. C., Wang, P. Q., Wang, D. H. & Cai, S. X. (2004). Relationship between the minute structure and the lodging resistance of rice stems. Colloids and Surfaces B: Biointerfaces 35, 155158.Google Scholar
Dunn, G. J. & Briggs, K. G. (1989). Variation in culm anatomy among barley cultivars differing in lodging resistance. Canadian Journal of Botany 67, 18381843.CrossRefGoogle Scholar
Dwivedi, S., Upadhyaya, H., Senthilvel, S., Hash, C., Fukunaga, K., Diao, X., Santra, D., Baltensperger, D. & Prasad, M. (2012). Millets: genetic and genomic resources. Plant Breeding Reviews 35, 247375.Google Scholar
Easson, D. L., White, E. M. & Pickles, S. J. (1993). The effects of weather, seed rate and cultivar on lodging and yield in winter wheat. Journal of Agricultural Science, Cambridge 121, 145156.CrossRefGoogle Scholar
Fischer, R. A. & Stapper, M. (1987). Lodging effects on high-yielding crops of irrigated semi dwarf wheat. Field Crops Research 17, 245258.CrossRefGoogle Scholar
Hua, Z. T., Hao, X. B., Shen, F., Zhang, Z. X., Wang, Y., Wang, Y. R. & Ma, X. F. (2003). Lodging traits of north Japonica super hybrid rice. Journal of Shenyang Agricultural University 34, 161164.Google Scholar
Kashiwagi, T. & Ishimaru, K. (2004). Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiology 134, 676683.CrossRefGoogle ScholarPubMed
Kashiwagi, T., Hirotsu, N., Ujiie, K. & Ishimaru, K. (2010). Lodging resistance locus prl5 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.). Field Crops Research 115, 107115.CrossRefGoogle Scholar
Kelbert, A. J., Spaner, D., Briggs, K. G. & King, J. R. (2004 a). Screening for lodging resistance in spring wheat breeding programmes. Plant Breeding 123, 349354.CrossRefGoogle Scholar
Kelbert, A. J., Spaner, D., Briggs, K. G. & King, J. R. (2004 b). The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica 136, 211221.CrossRefGoogle Scholar
Khush, G. S. (2001). Green revolution: the way forward. Nature Reviews Genetics 2, 815822.CrossRefGoogle ScholarPubMed
Kokubo, A., Kuraishi, S. & Sakurai, N. (1989). Culm strength of barley: correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiology 91, 876882.CrossRefGoogle ScholarPubMed
Kong, E. Y., Liu, D. C., Guo, X. L., Yang, W. L., Sun, J. Z., Li, X., Zhan, K. H., Cui, D. Q., Lin, J. X. & Zhang, A. M. (2013). Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop Journal 1, 4349.CrossRefGoogle Scholar
Lata, C., Gupta, S. & Prasad, M. (2013). Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology 33, 328343.CrossRefGoogle Scholar
Li, M., Zhang, H. C., Yang, X., Ge, M. J., Ma, Q., Wei, H. Y., Dai, Q. G., Hou, Z. Y. & Xu, L. (2012). Comparison of culm characteristics with different nitrogen use efficiencies for rice cultivars. Acta Agronomica Sinica 38, 12771285.CrossRefGoogle Scholar
Li, Y. H., Qian, Q., Zhou, Y. H., Yan, M. X., Sun, L., Zhang, M., Fu, Z. M., Wang, Y. H., Han, B., Pang, X. M., Chen, M. S. & Li, J. Y. (2003). Brittle Culm1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 15, 20202031.CrossRefGoogle ScholarPubMed
Nakano, J. & Meshitsuka, G. (1992). The detection of lignin. In Methods in Lignin Chemistry (Eds Lin, S. Y. & Dence, C. W.), pp. 2332. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Navabi, A., Iqbal, M., Strenzke, K. & Spaner, D. (2006). The relationship between lodging and plant height in a diverse wheat population. Canadian Journal of Plant Science 86, 723726.CrossRefGoogle Scholar
Ookawa, T. & Ishihara, K. (1992). Varietal difference of physical characteristic of the culm related to lodging resistance in paddy rice. Japanese Journal of Crop Science 61, 419425.CrossRefGoogle Scholar
Stanca, A. M., Jenkins, G. & Hanson, P. R. (1979). Varietal responses in spring barley to natural and artificial lodging and to a growth regulator. Journal of Agricultural Science, Cambridge 93, 440456.CrossRefGoogle Scholar
Stapper, M. & Fischer, R. A. (1990). Genotype, sowing date and plant spacing influence on high-yielding irrigated wheat in Southern New South Wales. II: growth, yield and nitrogen use. Australian Journal of Agricultural Research 41, 10211041.CrossRefGoogle Scholar
Sterling, M., Baker, C. J., Berry, P. M. & Wade, A. (2003). An experimental investigation of the lodging of wheat. Agricultural and Forest Meteorology 119, 149165.CrossRefGoogle Scholar
Tian, B. H. (2013). The methods of lodging resistance assessment in cereal crops and their application in foxtail millet. Journal of Plant Genetic Resources 14, 265269.Google Scholar
Tian, B. H., Wang, J. G., Zhang, L. X., Li, Y. J., Wang, S. Y. & Li, H. J. (2010). Assessment of tolerance to root lodging in landrace and improved cultivars in foxtail millet. Euphytica 172, 295302.CrossRefGoogle Scholar
Tripathi, S. C., Sayre, K. D., Kaul, J. N. & Narang, R. S. (2004). Lodging behavior and yield potential of spring wheat (Triticum aestivum L.): effects of ethephon and genotypes. Field Crops Research 87, 207220.CrossRefGoogle Scholar
Tripathi, S. C., Sayre, K. D. & Kaul, J. N. (2005). Planting system on lodging behavior, yield components, and yield of irrigated spring bread wheat. Crop Science 45, 14481455.CrossRefGoogle Scholar
Updegraff, D. M. (1969). Semimicro determination of cellulose in biological materials. Analytical Biochemistry 32, 420424.CrossRefGoogle ScholarPubMed
Wang, J., Zhu, J. M., Lin, Q. Q., Li, X. J., Teng, N. J., Li, Z. S., Li, B., Zhang, A. M. & Lin, J. X. (2006). Effects of stem structure and cell wall components on bending strength in wheat. Chinese Science Bulletin 51, 815823.CrossRefGoogle Scholar
Wang, Y. & Du, J. L. (2001). Evaluation method of root lodging resistance and its path analysis in barley. Acta Agronomica Sinica 27, 941945.Google Scholar
Wei, F. Z., Li, J. C., Wang, C. Y., Qu, H. J. & Shen, X. S. (2008). Effects of nitrogenous fertilizer application model on culm lodging resistance in winter wheat. Acta Agronomica Sinica 34, 10801085.CrossRefGoogle Scholar
Wonnacott, T. H. & Wonnacott, R. J. (1972). Introductory Statistics. New York: Wiley.Google Scholar
Xiao, S. H., Zhang, X. Y., Yan, C. S., Zhang, W. X., Hai, L. & Guo, H. J. (2002). Determination of resistance to lodging by stem strength in wheat. Scientia Agricultura Sinica 35, 711.Google Scholar
Yao, J., Ma, H., Zhang, P., Ren, L., Yang, X., Yao, G., Zhang, P. & Zhou, M. (2011). Inheritance of stem strength and its correlations with culm morphological traits in wheat (Triticum aestivum L.). Canadian Journal of Plant Science 91, 10651070.CrossRefGoogle Scholar
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar
Zhu, L., Shi, G. X., Li, Z. S., Kuang, T. Y., Li, B., Wei, Q. K., Bai, K. Z., Hu, Y. X. & Lin, J. X. (2004). Anatomical and chemical features of high-yield wheat cultivar with reference to its parents. Acta Botanica Sinica 46, 565572.Google Scholar
Zuber, U., Winzeler, H., Messmer, M. M., Keller, M., Keller, B., Schmid, J. E. & Stamp, P. (1999). Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). Journal of Agronomy and Crop Science 182, 1724.CrossRefGoogle Scholar