Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T07:01:15.678Z Has data issue: false hasContentIssue false

Changes in metabolites in maize seedlings under chlorsulfuron and cadmium stress

Published online by Cambridge University Press:  02 November 2015

L. J. ZHAO
Affiliation:
College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
J. F. XIE*
Affiliation:
College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
H. ZHANG
Affiliation:
Shanxi Academy of Analytical Science, Taiyuan 030006, PR China
Z. T. WANG
Affiliation:
College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
R. J. FAN
Affiliation:
Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi 030031, PR China
J. L. LV
Affiliation:
College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
M. ZHANG
Affiliation:
College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The herbicide chlorsulfuron is commonly applied to cereals and may persist in alkaline soil long enough to damage subsequent sensitive crops. Sewage water, a potential source of the heavy metal cadmium (Cd), is used to irrigate agricultural soils in many developing countries. The current work evaluated the effects of the residual herbicide chlorsulfuron and Cd on maize seedlings, with particular attention to the mechanism of their action on plant growth. Maize seeds were planted in soil that had been sprayed with chlorsulfuron and Cd, after which residues in both seedlings and the soil were measured. The chlorsulfuron dose was correlated with the amount of residue found in seedlings but not in the soil. In all, 39 metabolites were identified in seedlings using the Automated Mass spectral Deconvolution and Identification System software program and the retention index method. The combination of chlorsulfuron and Cd significantly reduced multiple metabolites in the shikimate pathway, malic acid and citric acid production in the tricarboxylic acid cycle, and lactic acid, glucose, aspartic acid, asparagine and 3-glycerophosphoric acid production. In addition, chlorsulfuron caused an increase in multiple amino acids, including tyrosine, methionine and asparagine, and a marked decrease in caffeic and cinnamic acids (the secondary metabolites derived from the shikimate pathway and galactose). Finally, chlorsulfuron and Cd stress markedly increased shikimate acid, decreased 3-glycerophosphoric acid and caused negative correlations between the amounts of phenylalanine and tyrosine and those of quinic- and cinnamic-acid. In conclusion, chlorsulfuron and Cd did not have a synergistic effect on maize seedlings; rather, the combination of these pollutants had an antagonistic effect on some amino acids.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beni, C., Marconi, S., Boccia, P., Ciampa, A., Diana, G., Aromolo, R., Sturchio, E., Neri, U., Sequi, P. & Valentini, M. (2011). Use of arsenic contaminated irrigation water for lettuce cropping: effects on soil, groundwater, and vegetal. Biological Trace Element Research 143, 518529.CrossRefGoogle ScholarPubMed
Benstein, R. M., Ludewig, K., Wulfert, S., Wittek, S., Gigolashvili, T., Frerigmann, H., Gierth, M., Flügge, U. I. & Krueger, S. (2013). Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. Plant Cell 25, 50115029.CrossRefGoogle ScholarPubMed
Bernillon, S., Biais, B., Deborde, C., Maucourt, M., Cabasson, C., Gibon, Y., Hansen, T. H., Husted, S., de Vos, R. C. H., Mumm, R., Jonker, H., Ward, J. L., Miller, S. J., Baker, J. M., Burger, J., Tadmor, Y., Beale, M. H., Schjoerring, J. K., Schaffer, A. A., Rolin, D., Hall, R. D. & Moing, A. (2013). Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics 9, 5777.CrossRefGoogle Scholar
Black, I. D., Pederson, R. N., Flynn, A., Moerkerk, M., Dyson, C. B., Kookana, R. & Wilhelm, N. (1999). Mobility and persistence of three sulfonylurea herbicides in alkaline cropping soils of south-eastern Australia. Australian Journal of Experimental Agriculture 39, 465472.CrossRefGoogle Scholar
Chen, Z. F., Zhao, Y., Guo, T. Z., Wang, S. F. & Tian, Q. (2013). Impacts of sewage irrigation on heavy metal distribution and chemical fractions in arable soils: a case study about sewage-irrigated farmlands of the Fenggangjian River in Tongzhou District of Beijing, China. Scientia Geographica Sinica 33, 10141021.Google Scholar
Dec, J. & Bollag, J. M. (1988). Microbial release and degradation of cathecol and chlorophenols bound to synthetic humic acid. Soil Science Society of America Journal 52, 13661371.CrossRefGoogle Scholar
Deng, F. (2005). Effects of glyphosate, chlorsulfuron, and methyl jasmonate on growth and alkaloid biosynthesis of jimsonweed (Datura stramonium L.). Pesticide Biochemistry and Physiology 82, 1626.CrossRefGoogle Scholar
Fan, Z. J., Qian, C. F., Yu, W. Q., Chen, J. P., Li, Z. M. & Wang, L. X. (2003). Study on enzymatic inhibition of acetolactate synthase from maize (Zea mays L.) by chlorsulfuron and tribenuron-methyl. Scientia Agricultura Sinica 36, 173178.Google Scholar
Fayeaz, K. A. & Kristen, U. (1996). The influence of herbicides on the growths and proline content of primary roots and on the ultrastructure of root caps. Environmental and Experimental Botany 36, 7181.CrossRefGoogle Scholar
Giardina, M. C. & Carosi, S. (1990). Effects of chlorsulfuron on polyamine content in maize seedlings. Pesticide Biochemistry and Physiology 36, 229236.CrossRefGoogle Scholar
Hanson, A. D. & Gregory, J. F. III (2011). Folate biosynthesis, turnover, and transport in plants. Annual Review of Plant Biology 62, 105125.CrossRefGoogle ScholarPubMed
Hanson, A. D. & Roje, S. (2001). One-carbon metabolism in higher plants. Annual Review of Plant Physiology & Plant Molecular Biology 52, 119137.CrossRefGoogle ScholarPubMed
He, J. H. & Sun, Y. (1993). The safety test of Methyl-metsulfuron and Chlorsulfuron on after-crops maize and soybean. Journal of Zhejiang Agricultural Sciences 2, 9497.Google Scholar
Hédiji, H., Djebali, W., Cabasson, C., Maucourt, M., Baldet, P., Bertrand, A., Boulila Zoghlami, L., Deborde, C., Moing, A., Brouquisse, R., Chaïbi, W. & Gallusci, P. (2010). Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotoxicology and Environmental Safety 73, 19651974.CrossRefGoogle ScholarPubMed
Ho, C. L. & Saito, K. (2001). Molecular biology of the plastidic phosphorylated serine biosynthetic pathway in Arabidopsis thaliana . Amino Acids 20, 243259.CrossRefGoogle ScholarPubMed
Hollaway, K. L., Kookana, R. S., Noy, D. M., Smith, J. G. & Wilhelm, N. (2006). Persistence and leaching of sulfonylurea herbicides over a 4-year period in the highly alkaline soils of south-eastern Australia. Australian Journal of Experimental Agriculture 46, 10691076.CrossRefGoogle Scholar
IAEA (1986). Quantification, Nature and Bioavailability of Bound 14C-pesticide Residues in Soil, Plants and Food. Vienna, Austria: International Atomic Energy Agency.Google Scholar
ISO (2013). Soil Quality – Determination of the Effects of Pollutants on Soil Flora. Part 2: Effects of Contaminated Soil on the Emergence and Early Growth of Higher Plants. BS EN ISO 11269–2: 2012. Geneva, Switzerland: International Organization for Standardization.Google Scholar
Karmakar, R., Bhattacharya, R. & Kulshrestha, G. (2009). Comparative metabolite profiling of the insecticide thiamethoxam in plant and cell suspension culture of tomato. Journal of Agricultural and Food Chemistry 57, 63696374.CrossRefGoogle ScholarPubMed
Kausch, K., Sobolev, A. P., Goyal, R. K., Fatima, T., Laila-Beevi, R., Saftner, R. A., Handa, A. K. & Mattoo, A. K. (2012). Methyl jasmonate deficiency alters cellular metabolome, including the aminome of tomato (Solanum lycopersicum L.) fruit. Amino Acids 42, 843856.CrossRefGoogle ScholarPubMed
Khan, S. U. (1982). Bound residues in soil and plants. Residues Reviews 84, 125.Google ScholarPubMed
Kim, J., Jung, Y., Song, B., Bong, Y-S., Ryu, D. H., Lee, K. S. & Hwang, G. S. (2013). Discrimination of cabbage (Brassica rapa ssp pekinensis) cultivars grown in different geographical areas using 1H NMR-based metabolomics. Food Chemistry 137, 6875.CrossRefGoogle ScholarPubMed
Li, X-F. (2012). Distribution characteristics and risk evaluation of heavy metals in soil of sewage irrigation area of Taiyuan City. Journal of Shanxi Agricultural Sciences 40, 742746, 774.Google Scholar
Liu, Q. D., Zhu, Y. R., Li, H. T. & Wang, Y. (2010). Changes of endopeptidase isoenzymes in Spirodela polyrrhiza thallus during senescence and effect of exogenous L-serine on endopeptidase isoenzymes. Plant Physiology Journal 46, 241244.Google Scholar
Lu, R. K., Xiong, L. M. & Shi, Z. Y. (1992). A review about studies on cadmium in soil-crop ecosystem. Soils 24, 129132, 137–141 (in Chinese).Google Scholar
Ma, S. C., Zhang, H. B., Ma, S. T., Wang, R., Wang, G. X., Shao, Y. & Li, C. X. (2015). Effects of mine wastewater irrigation on activities of soil enzymes and physiological properties, heavy metal uptake and grain yield in winter wheat. Ecotoxicology and Environmental Safety 113, 483490.CrossRefGoogle ScholarPubMed
Orcaray, L., Igal, M., Marino, D., Zabalza, A. & Royuela, M. (2010). The possible role of quinate in the mode of action of glyphosate and acetolactate synthase inhibitors. Pest Management Science 66, 262269.CrossRefGoogle ScholarPubMed
Orcaray, L., Igal, M., Zabalza, A. & Royuela, M. (2011). Role of exogenously supplied ferulic and p-coumaric acids in mimicking the mode of action of acetolactate synthase inhibiting herbicides. Journal of Agricultural and Food Chemistry 59, 1016210168.CrossRefGoogle ScholarPubMed
Orcaray, L., Zulet, A., Zabalza, A. & Royuela, M. (2012). Impairment of carbon metabolism induced by the herbicide glyphosate. Journal of Plant Physiology 169, 2733.CrossRefGoogle ScholarPubMed
Osten, V. A. & Walker, S. R. (1998). Recropping intervals for sulfonylurea herbicides are short in the semi-arid subtropics of Australia. Australian Journal of Experimental Agriculture 38, 7176.Google Scholar
Pereira, S. I., Figueiredo, P. I., Barros, A. S., Dias, M. C., Santos, C., Duarte, I. F. & Gil, A. M. (2014). Changes in the metabolome of lettuce leaves due to exposure to mancozeb pesticide. Food Chemistry 154, 291298.CrossRefGoogle ScholarPubMed
Picone, G., Mezzetti, B., Babini, E., Capocasa, F., Placucci, G. & Capozzi, F. (2011). Unsupervised principal component analysis of NMR metabolic profiles for the assessment of substantial equivalence of transgenic grapes (Vitis vinifera). Journal of Agricultural and Food Chemistry 59, 92719279.CrossRefGoogle ScholarPubMed
Qi, X., Chen, X. & Wang, Y. (2011). Plant Metabolomics: Methods and Applications. Beijing: Chemical Industry Press.Google Scholar
Sarmah, A. K., Kookana, R. S. & Alston, A. M. (1998). Fate and behaviour of triasulfuron, metsulfuron-methyl, and chlorsulfuron in the Australian soil environment: a review. Australian Journal of Agricultural Research 49, 775790.CrossRefGoogle Scholar
Shan, Z. J., Wang, L. S. & Cai, D. J. (2001). Residue of chlorsulfuron in soil and its effects on following crop. Rural Eco-Environment 17, 3538.Google Scholar
Sobolev, A. P., Capitani, D., Giannino, D., Nicolodi, C., Testone, G., Santoro, F., Frugis, G., Iannelli, M. A., Mattoo, A. K., Brosio, E., Gianferri, R., D'Amico, I. & Mannina, L. (2010). NMR-metabolic methodology in the study of GM foods. Nutrients 2, 115.CrossRefGoogle Scholar
Son, H. S., Hwang, G. S., Kim, K. M., Ahn, H. J., Park, W. M., Van Den Berg, F., Hong, Y. S. & Lee, C. H. (2009). Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics. Journal of Agricultural and Food Chemistry 57, 14811490.CrossRefGoogle ScholarPubMed
Song, Y-J., Diao, Q-N. & Qi, H-Y. (2012). Research progress on relationship between polyamine metabolism and plant stress resistance. China Vegetables 1, 3642.Google Scholar
Spraul, M., Schütz, B., Humpfer, E., Mörtter, M., Schäfer, H., Koswig, S. & Rinke, P. (2009). Mixture analysis by NMR as applied to fruit juice quality control. Magnetic Resonance in Chemistry 47, S1, S130S137.CrossRefGoogle ScholarPubMed
Stork, P. R. (1995). Field leaching and degradation of soil applied herbicides in a gradationally textured alkaline soil: chlorsulfuron and triasulfuron. Australian Journal of Agricultural Research 46, 14451458.CrossRefGoogle Scholar
Waditee, R., Bhuiyan, N. H., Hirata, E., Hibino, T., Tanaka, Y., Shikata, M. & Takabe, T. (2007). Metabolic engineering for betaine accumulation in microbes and plants. Journal of Biological Chemistry 282, 3418534193.CrossRefGoogle ScholarPubMed
Walker, S. R. & Robinson, G. R. (1996). Chlorsulfuron residues are not accumulating in soils of southern Queensland. Australian Journal of Experimental Agriculture 36, 223228.CrossRefGoogle Scholar
Wang, J. F., Ji, Q. M., Jiang, L., Shen, S. D., Fan, Y. L. & Zhang, C. Y. (2009). Overexpression of a cytosol-localized rhamnose biosynthesis protein encoded by Arabidopsis RHM1 gene increases rhamnose content in cell wall. Plant Physiology and Biochemistry 47, 8693.CrossRefGoogle ScholarPubMed
Xie, W. Y., Fan, G. S., Zhou, H. P., Xie, J. F. & Guan, C. L. (2011). Access of heavy metals pollution of the sewage irrigation region in Taiyuan, China. Journal of Agro-Environment Science 30, 15531560.Google Scholar
Ye, Q.-F., Wu, J.-M. & Sun, J.-H. (2004). Bioavailability of bound residue derived from14C-labeled chlorsulfuron in soil and its mechanism of phytotoxicity. Journal of Environmental Sciences (China) 16, 262267.Google ScholarPubMed
Yu, L., Qin, G., Zhang, J., Liang, Y., Song, Y., Zhao, M., Tsuge, T., Aoyama, T., Liu, J., Gu, H. & Qu, L. J. (2011). D-myo-inositol-3-phosphate affects phosphatidylinositol-mediated endomembrane function in Arabidopsis and is essential for auxin-regulated embryogenesis. The Plant Cell 23, 13521372.Google Scholar
Zabalza, A., Orcaray, L., Gaston, S. & Royuela, M. (2004). Carbohydrate accumulation in leaves of plants treated with the herbicide chlorsulfuron or imazethapyr is due to a decrease in sink strength. Journal of Agricultural and Food Chemistry 52, 76017606.CrossRefGoogle ScholarPubMed
Zabalza, A., Gonzalez, E. M., Arrese-Igor, C. & Royuela, M. (2005). Fermentative metabolism is induced by inhibiting different enzymes of the branched-chain amino acid biosynthesis pathway in pea plants. Journal of Agricultural and Food Chemistry 53, 74867493.CrossRefGoogle ScholarPubMed
Zabalza, A., Amaia, Z., Gil-Monreal, M., Igal, M. & Royuela, M. (2013). Branched-chain amino acid biosynthesis inhibitors: Herbicide efficacy is associated with an induced carbon-nitrogen imbalance. Journal of Plant Physiology 170, 814821.CrossRefGoogle ScholarPubMed
Zeng, D. F. & Zhu, W. B. (2005). Discussion on problems of sewage irrigation and countermeasures in China. Agricultural Research in the Arid Areas 22, 221224.Google Scholar
Zhang, X. T., Breksa, A. P., Mishchuk, D. O., Fake, C. E., O'Mahony, M. A. & Slupsky, C. M. (2012). Fertilisation and pesticides affect mandarin orange nutrient composition. Food Chemistry 134, 10201024.CrossRefGoogle ScholarPubMed
Zhang, H., Zhang, M., Han, J. & Liu, H. (2015). Determination of chlorsulfuron by UPLC-MS/MS and residue dynamic of chlorsulfuron in the soil. Journal of Shanxi Agricultural University (Natural Science Edition) 35, 209212.Google Scholar
Zhou, Q., Liu, W., Zhang, Y. & Liu, K. K. (2007). Action mechanisms of acetolactate synthase-inhibiting herbicides. Pesticide Biochemistry and Physiology 89, 8996.CrossRefGoogle Scholar