Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T02:42:52.189Z Has data issue: false hasContentIssue false

Challenges for weed management in African rice systems in a changing climate

Published online by Cambridge University Press:  25 February 2011

J. RODENBURG*
Affiliation:
Africa Rice Center (AfricaRice), East and Southern Africa Rice Program (ESARP), P.O. Box 33581, Dar es Salaam, Tanzania
H. MEINKE
Affiliation:
Department of Plant Sciences, Centre for Crop Systems Analysis (CSA), Wageningen University, Wageningen, The Netherlands
D. E. JOHNSON
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Global changes including increases in temperature, atmospheric greenhouse gases, soil degradation and competition for land and water resources, will have multiple impacts on rice production systems in Africa. These changes will affect weed communities, and management approaches must be adapted to take this into account. Higher temperatures and limited water availability will generally advantage C4 over C3 plants (e.g. rice). Conversely, elevated carbon dioxide (CO2) levels will improve the competitiveness of rice relative to C4 weeds, which comprise many of the problem weeds of rice. Increased atmospheric CO2 levels may also improve tolerance of rice against parasitic weeds, while prevalence of parasitic species may be amplified by soil degradation and more frequent droughts or floods. Elevated CO2 levels tend to promote growth below-ground relative to above-ground, particularly in perennial (C3) species. This may render mechanical control of weeds within a cropping season less effective or even counterproductive. Increased CO2 levels, rainfall and temperature may also reduce the effectiveness of chemical control, while the implementation of adaptation technologies, such as water-saving irrigation regimes, will have negative consequences for rice–weed competition. Rain-fed production systems are prevalent throughout Africa and these are likely to be most vulnerable to direct effects of climate change (e.g. higher temperatures and changes in rainfall patterns). Effective weed management strategies in these environments could encompass off-season tillage, the use of well-adapted cultivars (i.e. those with drought and heat tolerance, high weed competitiveness and parasitic weed resistance or tolerance) and rotations, intercropping or short, off-season fallows with weed-suppressive legumes including those that suppress parasitic weeds. In irrigated, non-flooded rice systems, weeds are expected to become more serious. Specifically, perennial rhizomatous C3 weeds and species adapted to hydromorphic conditions are expected to increase in prevalence. By implementing an integrated weed management strategy primarily targeted at weed prevention, dependency on flood water, herbicides and mechanical control can be lessened. Off-season deep tillage, stale seed bed techniques, use of clean seeds and irrigation water, competitive cultivars, timely transplanting at optimum spacing and judicious fertilizer timings are suitable candidate components for such a strategy. Integrated, novel approaches must be developed to assist farmers in coping with the challenges of weed control in the future.

Type
Climate Change and Agriculture
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akobundu, I. O. (1987). Weed Science in the Tropics – Principles and Practices. Chichester, UK: John Wiley & Sons.Google Scholar
Asch, F., Dingkuhn, M., Sow, A. & Audebert, A. (2005). Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crops Research 93, 223236.CrossRefGoogle Scholar
Bailey, S. W. (2004). Climate change and decreasing herbicide persistence. Pest Management Science 60, 158162.CrossRefGoogle ScholarPubMed
Balasubramanian, V., Sie, M., Hijmans, R. J. & Otsuka, K. (2007). Increasing rice production in sub-Saharan Africa: challenges and opportunities. Advances in Agronomy 94, 55133.CrossRefGoogle Scholar
Barrett, C. B., Moser, C. M., McHugh, O. V. & Barison, J. (2004). Better technology, better plots, or better farmers? Identifying changes in productivity and risk among Malagasy rice farmers. American Journal of Agricultural Economics 86, 869888.CrossRefGoogle Scholar
Bazzaz, F. A. & Carlson, R. W. (1984). The response of plants to elevated CO2 .1. Competition among an assemblage of annuals at two levels of soil moisture. Oecologia 62, 196198.CrossRefGoogle ScholarPubMed
Becker, M. & Johnson, D. E. (1999 a). Rice yield and productivity gaps in irrigated systems of the forest zone of Côte d'Ivoire. Field Crops Research 60, 201208.CrossRefGoogle Scholar
Becker, M. & Johnson, D. E. (1999 b). The role of legume fallows in intensified upland rice-based systems of West Africa. Nutrient Cycling in Agroecosystems 53, 7181.CrossRefGoogle Scholar
Biasutti, M., Held, I. M., Sobel, A. H. & Giannini, A. (2008). SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. Journal of Climate 21, 34713486.CrossRefGoogle Scholar
Bjorkman, O. (1976). Adaptive and genetic aspects of C4 photosynthesis. In Metabolism and Plant Productivity (Eds Burris, R. H. & Black, C. C.), pp. 287309. Baltimore, MD: University Park Press.Google Scholar
Carter, D. R. & Peterson, K. M. (1983). Effects of a CO2-enriched atmosphere on the growth and competitive interaction of a C3 and a C4 grass. Oecologia 58, 188193.CrossRefGoogle Scholar
Chauhan, B. S. & Johnson, D. E. (2008). Germination ecology of Chinese sprangletop (Leptochloa chinensis) in the Philippines. Weed Science 56, 820825.CrossRefGoogle Scholar
Chauhan, B. S. & Johnson, D. E. (2009 a). Ecological studies on Cyperus difformis, Cyperus iria and Fimbristylis miliacea: three troublesome annual sedge weeds of rice. Annals of Applied Biology 155, 103112.CrossRefGoogle Scholar
Chauhan, B. S. & Johnson, D. E. (2009 b). Seed germination ecology of junglerice (Echinochloa colona): a major weed of rice. Weed Science 57, 235240.CrossRefGoogle Scholar
Chikoye, D., Manyong, V. M. & Ekeleme, F. (2000). Characteristics of speargrass (Imperata cylindrica) dominated fields in West Africa: crops, soil properties, farmer perceptions and management strategies. Crop Protection 19, 481487.CrossRefGoogle Scholar
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W. T., Laprise, R., Magaa Rueda, V., Mearns, L., Menendez, C. G., Raisanen, J., Rinke, A., Sarr, A. & Whetton, P. (2007). Regional climate projections. In Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. M. B. & Miller, H. L.), pp. 847940. Cambridge: Cambridge University Press.Google Scholar
Cochrane, V. & Press, M. C. (1997). Geographical distribution and aspects of the ecology of the hemiparasitic angiosperm Striga asiatica (L.) Kuntze: a herbarium study. Journal of Tropical Ecology 13, 371380.CrossRefGoogle Scholar
Cook, K. H. & Vizy, E. K. (2006). Coupled model simulations of the West African monsoon system: twentieth- and twenty-first-century simulations. Journal of Climate 19, 36813703.CrossRefGoogle Scholar
Dastgheib, F. (1989). Relative importance of crop seed, manure and irrigation water as sources of weed infestation. Weed Research 29, 113116.CrossRefGoogle Scholar
de Vries, M. E., Rodenburg, J., Bado, B. V., Sow, A., Leffelaar, P. A. & Giller, K. E. (2010). Rice production with less irrigation water is possible in a Sahelian environment. Field Crops Research 116, 154164.CrossRefGoogle Scholar
Downton, W. J. S. (1975). Occurrence of C4 photosynthesis among plants. Photosynthetica 9, 96105.Google Scholar
Elmore, C. D. & Paul, R. N. (1983). Composite list of C4 weeds. Weed Science 31, 686692.CrossRefGoogle Scholar
FAO (2009). FAO Statistical Databases. Available at: http://faostat.fao.org/ (verified 15 Dec 2010).Google Scholar
Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems and Environment 97, 120.CrossRefGoogle Scholar
Giannini, A., Biasutti, M., Held, I. M. & Sobel, A. H. (2008). A global perspective on African climate. Climatic Change 90, 359383.CrossRefGoogle Scholar
Giller, K. E., Witter, E., Corbeels, M. & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: the heretics' view. Field Crops Research 114, 2334.CrossRefGoogle Scholar
Gurney, A. L., Taylor, A., Mbwaga, A., Scholes, J. D. & Press, M. C. (2002). Do maize cultivars demonstrate tolerance to the parasitic weed Striga asiatica? Weed Research 42, 299306.CrossRefGoogle Scholar
Haden, V. R., Duxbury, J. M., DiTommaso, A. & Losey, J. E. (2007). Weed community dynamics in the system of rice intensification (SRI) and the efficacy of mechanical cultivation and competitive rice cultivars for weed control in Indonesia. Journal of Sustainable Agriculture 30, 526.CrossRefGoogle Scholar
Haefele, S. M., Johnson, D. E., M' Bodj, D., Wopereis, M. C. S. & Miézan, K. M. (2004). Field screening of diverse rice genotypes for weed competitiveness in irrigated lowland ecosystems. Field Crops Research 88, 3956.CrossRefGoogle Scholar
Hoerling, M., Hurrell, J., Eischeid, J. & Phillips, A. (2006). Detection and attribution of twentieth-century northern and southern African rainfall change. Journal of Climate 19, 39894008.CrossRefGoogle Scholar
Howden, S. M., Soussana, J-F., Tubiello, F. N., Chhetri, N., Dunlop, M. & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences USA 104, 1969119696.CrossRefGoogle ScholarPubMed
Ingram, J. S. I., Gregory, P. J. & Izac, A. M. (2008). The role of agronomic research in climate change and food security policy. Agriculture, Ecosystems and Environment 126, 412.CrossRefGoogle Scholar
IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Pachauri, R. K. & Reisinger, A.). Geneva, Switzerland: IPCC.Google Scholar
Johnson, D. E., Dingkuhn, M., Jones, M. P. & Mahamane, M. C. (1998). The influence of rice plant type on the effect of weed competition on Oryza sativa and Oryza glaberrima. Weed Research 38, 207216.CrossRefGoogle Scholar
Kanampiu, F. K., Kabambe, V., Massawe, C., Jasi, L., Friesen, D., Ransom, J. K. & Gressel, J. (2003). Multi-site, multi-season field tests demonstrate that herbicide seed-coating herbicide-resistance maize controls Striga spp. and increases yields in several African countries. Crop Protection 22, 697706.CrossRefGoogle Scholar
Keating, B. A., Carberry, P. S., Bindraban, P. S., Asseng, S., Meinke, H. & Dixon, J. (2010). Eco-efficient agriculture: concepts, challenges, and opportunities. Crop Science 50, S109S119.CrossRefGoogle Scholar
Kroschel, J. (1998). Striga – How will it affect African agriculture in the future? – An ecological perspective. In Agroecology, Plant Protection and the Human Environment: Views and Concepts (Eds Martin, K., Muther, J. & Auffarth, A.), pp. 137158. Weikersheim, Germany: Margraf Verlag.Google Scholar
Krupnik, T. J., Rodenburg, J., Shennan, C., Mbaye, D. & Haden, V. R. (2010). Trade-offs between rice yield, weed competition and water productivity under recommended and water-saving rice production practices in the Sahel. In Abstracts. Africa Rice Congress 2010: Innovation and Partnerships to Realize Africa’s Rice Potential, 22–26 March 2010, Bamako, Mali (Eds Kiepe, P., Diatta, M. & Millar, D.), p. 66. Cotonou, Benin, Africa: Africa Rice Center.Google Scholar
Latif, M. A., Islam, M. R., Ali, M. Y. & Saeque, M. A. (2005). Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Research 93, 281292.CrossRefGoogle Scholar
Liebman, M. & Davis, A. S. (2000). Integration of soil, crop and weed management in low-external-input farming systems. Weed Research 40, 2747.CrossRefGoogle Scholar
Meinke, H., Bastiaans, L., Bouman, B., Dingkuhn, M., Gaydon, D., Hasegawa, T., Heinemann, A. B., Kiepe, P., Lafarge, T., Luquet, D., Masood, A., van Oort, P., Rodenburg, J., Yan, J. & Yin, X. (2009 a). An international collaborative research network helps to design climate robust rice systems. In Crop Production under Heat Stress: Monitoring, Impact Assessment and Adaptation. Proceedings of the MARCO Symposium 2009 held in Tsukuba, Japan, 5–9 October 2009 (Eds Hasegawa, T. & Sakai, H.), pp. 112. Tsukuba (Japan): National Institute for Agro-Environmental Sciences (NIAES). Available online at: http://www.niaes.affrc.go.jp/marco/marco2009/ws2proc.pdf (verified 17 Feb 2011).Google Scholar
Meinke, H., Howden, S. M., Struik, P. C., Nelson, R., Rodriguez, D. & Chapman, C. S. (2009 b). Adaptation science for agricultural and natural resource management – Urgency and theoretical basis. Current Opinion in Environmental Sustainability 1, 6976.CrossRefGoogle Scholar
Mohamed, K. I., Bolin, J. F., Musselman, L. J. & Townsend Peterson, A. (2007). Genetic diversity of Striga and implications for control and modeling future distributions. In Integrating New Technologies for Striga Control – Towards Ending the Witch-hunt (Eds Ejeta, G. & Gressel, J.), pp. 7184. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
Mohamed, K. I., Papes, M., Williams, R., Benz, B. W. & Peterson, T. A. (2006). Global invasive potential of 10 parasitic witchweeds and related Orobanchaceae. Ambio 35, 281288.CrossRefGoogle ScholarPubMed
Morita, H. & Kabaki, N. (2002). Effects of soil moisture conditions on the emergence of weeds and rice plants from rain-fed paddy soils in north-east Thailand. Weed Biology and Management 2, 209212.CrossRefGoogle Scholar
Oechel, W. C. & Strain, B. R. (1985). Native species responses to increased atmospheric carbon dioxide concentration. In Direct Effects of Increasing Carbon Dioxide on Vegetation (Eds Strain, B. R. & Cure, J. D.), pp. 117154. Washington, DC: U.S. Department of Energy.Google Scholar
Parmesan, C. (1996). Climate and species’ range. Nature 382, 765766.CrossRefGoogle Scholar
Patterson, D. T. (1995). Weeds in a changing climate. Weed Science 43, 685701.CrossRefGoogle Scholar
Patterson, D. T., Musser, R. L., Flint, E. P. & Eplee, R. E. (1982). Temperature responses and potential for spread of witchweed (Striga lutea) in the United States. Weed Science 30, 8793.CrossRefGoogle Scholar
Patterson, D. T., Westbrook, J. K., Joyce, R. J. V., Lingren, P. D. & Rogasik, J. (1999). Weeds, insects, and diseases. Climatic Change 43, 711727.CrossRefGoogle Scholar
Phoenix, G. K. & Press, M. C. (2005). Effects of climate change on parasitic plants: The root hemiparasitic Orobanchaceae. Folia Geobotanica 40, 205216.CrossRefGoogle Scholar
Phuong, L. T., Denich, M., Vlek, P. L. G. & Balasubramanian, V. (2005). Suppressing weeds in direct-seeded lowland rice: effects of methods and rates of seeding. Journal of Agronomy and Crop Science 191, 185194.CrossRefGoogle Scholar
Raghavendra, A. S. & Das, V. S. R. (1978). Occurrence of C4-photosynthesis – supplementary list of C4 plants reported during late 1974-mid 1977. Photosynthetica 12, 200208.Google Scholar
Rao, A. N., Johnson, D. E., Sivaprasad, B., Ladha, J. K. & Mortimer, A. M. (2007). Weed management in direct-seeded rice. Advances in Agronomy 93, 153255.CrossRefGoogle Scholar
Rao, A. N. & Moody, K. (1990). Weed seed contamination in rice seed. Seed Science and Technology 18, 139146.Google Scholar
Riches, C. R., Mbwaga, A. M., Mbapila, J. & Ahmed, G. J. U. (2005). Improved weed management delivers increased productivity and farm incomes from rice in Bangladesh and Tanzania. Aspects of Applied Biology 75, 127138.Google Scholar
Rodenburg, J., Bastiaans, L., Schapendonk, A. H. C. M., van der Putten, P. E. L., van Ast, A., Dingemanse, N. J. & Haussmann, B. I. G. (2008). CO2-assimilation and chlorophyll fluorescence as indirect selection criteria for host tolerance against Striga. Euphytica 160, 7587.CrossRefGoogle Scholar
Rodenburg, J. & Johnson, D. E. (2009). Weed management in rice-based cropping systems in Africa. Advances in Agronomy 103, 149218.CrossRefGoogle Scholar
Rodenburg, J., Riches, C. R. & Kayeke, J. M. (2010). Addressing current and future problems of parasitic weeds in rice. Crop Protection 29, 210221.CrossRefGoogle Scholar
Rodenburg, J., Saito, K., Kakai, R. G., Toure, A., Mariko, M. & Kiepe, P. (2009). Weed competitiveness of the lowland rice varieties of NERICA in the southern Guinea Savanna. Field Crops Research 114, 411418.CrossRefGoogle Scholar
Rozenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T. L., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Rawlins, S. & Imeson, A. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353357.CrossRefGoogle Scholar
Sage, R. F., Li, M. & Monson, R. K. (1999). The taxonomic distribution of C4 photosynthesis. In C4 Plant Biology (Eds Sage, R. F. & Monson, R. K.), pp. 551584. San Diego, CA: Academic Press.CrossRefGoogle Scholar
Saito, K., Azoma, K. & Rodenburg, J. (2010). Plant characteristics associated with weed competitiveness of rice under upland and lowland conditions in West Africa. Field Crops Research 116, 308317.CrossRefGoogle Scholar
Seckler, D., Barker, R. & Amarasinghe, U. (1999). Water scarcity in the twenty-first century. International Journal of Water Resources Development 15, 2942.CrossRefGoogle Scholar
Sharma, A. R. (1997). Effect of integrated weed management and nitrogen fertilization on the performance of rice under flood-prone lowland conditions. Journal of Agricultural Science, Cambridge 129, 409418.CrossRefGoogle Scholar
van Heemst, H. D. J. (1985). The influence of weed competition on crop yield. Agricultural Systems 18, 8193.CrossRefGoogle Scholar
Vogt, W., Sauerborn, J. & Honisch, M. (1991). Striga hermonthica distribution and infestation in Ghana and Togo on grain crops. In Proceedings of the 5th International Symposium on Parasitic Weeds (Eds Ransom, J. K., Musselman, L. J., Worsham, A. D. & Parker, C.), pp. 372377. Nairobi, Kenya: CIMMYT.Google Scholar
von Grebmer, K., Fritschel, H., Nestorova, B., Olofinbiyi, T., Pandya-Lorch, R. & Yohannes, Y. (2008). Global Hunger Index. The Challenge of Hunger 2008. Bonn, Washington, DC & Dublin: Welt Hunger Hilfe, IFPRI & Concern Worldwide.Google Scholar
Wand, S. J. E., Midgley, G. F., Jones, M. H. & Curtis, P. S. (1999). Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology 5, 723741.CrossRefGoogle Scholar
Wassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redona, E., Serraj, R., Singh, R. K., Howell, G., Pathak, H. & Sumfleth, K. (2009). Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy 101, 59122.CrossRefGoogle Scholar
Watling, J. R. & Press, M. C. (2000). Infection with the parasitic angiosperm Striga hermonthica influences the response of the C3 cereal Oryza sativa to elevated CO2. Global Change Biology 6, 919930.CrossRefGoogle Scholar
Wong, S. C. (1990). Elevated atmospheric partial pressure of CO2 and plant growth. 2. Non-structural carbohydrate content in cotton plants and its effect on growth parameters. Photosynthesis Research 23, 171180.CrossRefGoogle ScholarPubMed
Yin, X. & Struik, P. C. (2008). Applying modelling experiences from the past to shape crop systems biology: the need to converge crop physiology and functional genomics. New Phytologist 179, 629642.CrossRefGoogle ScholarPubMed
Ziska, L. H. (2003). Evaluation of the growth response of six invasive species to past, present and future carbon dioxide concentrations. Journal of Experimental Botany 54, 395404.CrossRefGoogle Scholar
Ziska, L. H. (2008). Rising atmospheric carbon dioxide and plant biology: The overlooked paradigm. DNA and Cell Biology 27, 165172.CrossRefGoogle ScholarPubMed
Ziska, L. H. & Teasdale, J. R. (2000). Sustained growth and increased tolerance to glyphosate observed in a C-3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Australian Journal of Plant Physiology 27, 159166.Google Scholar
Ziska, L. H., Teasdale, J. R. & Bunce, J. A. (1999). Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Science 47, 608615.CrossRefGoogle Scholar