Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T16:58:39.138Z Has data issue: false hasContentIssue false

Application of a SUGAR model to analyse sugar accumulation in peach cultivars that differ in glucose–fructose ratio

Published online by Cambridge University Press:  02 June 2011

B. H. WU*
Affiliation:
Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
B. QUILOT
Affiliation:
UR1052, Génétique et Amélioration des Fruits et Légumes, INRA, BP 94, 84143 Montfavet, France
M. GÉNARD
Affiliation:
UR1115 Plantes et Systèmes de culture Horticoles, INRA, F-84000 Avignon, France
S. H. LI
Affiliation:
Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
J. B. ZHAO
Affiliation:
Institute of Forestry and Fruit, Beijing Academy of Agriculture and Forestry Sciences, 100094 Beijing, China
J. YANG
Affiliation:
Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
Y. Q. WANG
Affiliation:
Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

A SUGAR model, which was established to predict the partitioning of carbon into sucrose, glucose, fructose and sorbitol in fruit mesocarp of peach cultivars (Prunus persica (L.) Batch) with normal glucose: fructose ratio (G:F) of 0·8–1·5, was evaluated and extended for peach cultivars with a high G:F ratio of 1·5–7·8. The extended model (SUGARb) is more generic and assumes a high G:F ratio to be due to preferential transformation of sorbitol into glucose, preferential utilization of fructose or preferential conversion of fructose into glucose. The simulated seasonal variations in sugars via the SUGARb-model-matched experimental data for three normal and three high G:F cultivars well, and accurately exhibited G:F ratio characteristics. The relative rates of sucrose transformation into glucose and fructose differed according to cultivar but not according to G:F status. Compared with hexosephosphate interconversion, a lower production rate of fructose than glucose from sorbitol, and/or a higher utilization rate of fructose than that of glucose might be preferential alternatives for forming high G:F ratios in the high G:F cultivars studied in the present study, which is discussed in the light of recent results on enzyme activities.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bates, D. M. & Chambers, J. M. (1992). Nonlinear models. In Statistical Models in S (Eds Chambers, J. M. & Hastie, T. J.), pp. 421454. New York: Chapman & Hall.Google Scholar
Berüter, J. (2004). Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. Journal of Plant Physiology 161, 10111029.CrossRefGoogle ScholarPubMed
Borsani, J., Budde, C. O., Porrini, L., Lauxmann, M. A., Lombardo, V. A., Murray, R., Andreo, C. S., Drincovich, M. F. & Lara, M. V. (2009). Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany 60, 18231837.CrossRefGoogle ScholarPubMed
Chapman, G. W. Jr. & Horvat, R. J. (1990). Changes in nonvolatile acids, sugars, pectin and sugar composition of pectin during peach (cv. Monroe) maturation. Journal of Agriculture and Food Chemistry 38, 383387.CrossRefGoogle Scholar
Dai, N., German, M. A., Matsevitz, T., Hanael, R., Swartzberg, D., Yeselson, Y., Petreikov, M., Schaffer, A. A. & Granot, D. (2002). LeFRK2, the gene encoding the major fructokinase in tomato fruits, is not required for starch biosynthesis in developing fruits. Plant Science 162, 423430.CrossRefGoogle Scholar
DeJong, T. M., Doyle, J. F. & Day, K. R. (1987). Seasonal patterns of reproductive and vegetative sink activity in early and late maturing peach (Prunus persica) cultivars. Physiologia Plantarum 71, 8388.CrossRefGoogle Scholar
DeJong, T. M. & Goudriaan, J. (1989). Modeling peach fruit growth and carbohydrate requirements: reevaluation of the double-sigmoid growth pattern. Journal of the American Society for Horticultural Science 114, 800804.CrossRefGoogle Scholar
Dirlewanger, E., Moing, A., Rothan, C., Svanella, L., Pronier, V., Guye, A., Plomion, C. & Monet, R. (1999). Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theoretical and Applied Genetics 98, 1831.CrossRefGoogle Scholar
Doty, T. E. (1976). Fructose sweetness: a new dimension. Cereal Foods World 21, 6263.Google Scholar
Escobar-Gutiérrez, A. J. & Gaudillère, J. P. (1994). Variability in sorbitol: sucrose ratios in mature leaves of different peach cultivars. Journal of the American Society for Horticultural Science 119, 321324.CrossRefGoogle Scholar
Escobar-Gutiérrez, A. J. & Gaudillère, J. P. (1997). Carbon partitioning in source leaves of peach, a sorbitol-synthesizing species, is modified by photosynthetic rate. Physiologia Plantarum 100, 353360.CrossRefGoogle Scholar
Escobar-Gutiérrez, A. J., Zipperlin, B., Carbonne, F., Moing, A. & Gaudillère, J. P. (1998). Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Australian Journal of Plant Physiology 25, 197205.Google Scholar
Esti, M., Messia, M. C., Sinesio, F., Nicotra, A., Conte, L., la Notte, E. & Palleschi, G. (1997). Quality evaluation of peaches and nectarines by electrochemical and multivariate analyses: relationships between analytical measurements and sensory attributes. Food Chemistry 60, 659666.CrossRefGoogle Scholar
Génard, M., Lescourret, F., Gomez, L. & Habib, R. (2003). Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica). Tree Physiology 23, 373385.CrossRefGoogle ScholarPubMed
Génard, M., Lescourret, F., Reich, M., Albagnac, G. & Audergon, J. M. (2006). Modeling the apricot sugar contents in relation to fruit growth. Acta Horticulturae 701, 517522.CrossRefGoogle Scholar
Génard, M. & Souty, M. (1996). Modeling the peach sugar contents in relation to fruit growth. Journal of the American Society for Horticultural Science 121, 11221131.CrossRefGoogle Scholar
Grechi, I., Hilgert, N., Génard, M. & Lescourret, F. (2008). Assessing the peach fruit refractometric index at harvest with a simple model based on fruit growth. Journal of the American Society for Horticultural Science 133, 178187.CrossRefGoogle Scholar
Kanayama, Y., Kogawa, M., Yamaguchi, M. & Kanahama, K. (2005). Fructose content and the activity of fructose-related enzymes in the fruit of eating-quality peach cultivars and native-type peach cultivars. Journal of the Japanese Society for Horticultural Science 74, 431436.CrossRefGoogle Scholar
Kortstee, A. J., Appeldoorn, N. J. G., Oortwijn, M. E. P. & Visser, R. G. F. (2007). Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives. Planta 226, 929939.CrossRefGoogle ScholarPubMed
Kulp, K., Lorenz, K. & Stone, M. (1991). Functionality of carbohydrates ingredients in bakery products. Food Technology 45, 136142.Google Scholar
Lo Bianco, R., Rieger, M. & Sung, S. S. (1999). Carbohydrate metabolism of vegetative and reproductive sinks in the late-maturing peach cultivar ‘Encore’. Tree Physiology 19, 103109.CrossRefGoogle ScholarPubMed
Lo Bianco, R., Rieger, M. & Sung, S. S. (2000). Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiologia Plantarum 108, 7178.CrossRefGoogle Scholar
Moing, A., Carbonne, F., Rashad, M. H. & Gaudillère, J. P. (1992). Carbon fluxes in mature peach leaves. Plant Physiology 100, 18781884.CrossRefGoogle ScholarPubMed
Moing, A., Carbonne, F., Zipperlin, B., Svanella, L. & Gaudillère, J. P. (1997). Phloem loading in peach: symplastic or apoplastic? Physiologia Plantarum 101, 489496.CrossRefGoogle Scholar
Morandi, B., Grappadelli, L. C., Rieger, M. & Lo Bianco, R. (2008). Carbohydrate availability affects growth and metabolism in peach fruit. Physiologia Plantarum 133, 229241.CrossRefGoogle ScholarPubMed
Moriguchi, T., Sanada, T. & Yamaki, S. (1990 a). Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. Journal of the American Society for Horticultural Science 115, 278281.CrossRefGoogle Scholar
Moriguchi, T., Ishizawa, Y. & Sanada, T. (1990 b). Differences in sugar composition in Prunus persica fruit and the classification by the Principal Component Analysis. Journal of the Japanese Society for Horticultural Science 59, 307312.CrossRefGoogle Scholar
Nadwodnik, J. & Lohaus, G. (2008). Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritime, Prunus persica, and Apium graveolens. Planta 227, 10791089.CrossRefGoogle Scholar
Niu, J., Zhao, J. B., Wu, B. H., Li, S. H., Liu, G. J. & Jiang, Q. (2006). Sugar and acid contents in peach and nectarine derived from different countries and species. Acta Horticulturea Sinica 33, 611.Google Scholar
Pangborn, R. M. (1963). Relative taste of selected sugars and organic acids. Journal of Food Science 28, 726733.CrossRefGoogle Scholar
Quilot, B., Génard, M., Kervella, J. & Lescourret, F. (2004). Analysis of genotypic variation in fruit flesh total sugar content via an ecophysiological model applied to peach. Theoretical and Applied Genetics 109, 440449.CrossRefGoogle ScholarPubMed
Robertson, J. A., Horvat, R. J., Lyon, B. G., Meredith, F. I., Senter, S. D. & Okie, W. R. (1990). Comparison of quality characteristics of selected yellow- and white-fleshed peach cultivars. Journal of Food Science 55, 13081311.CrossRefGoogle Scholar
Rohwer, J. M. & Botha, F. C. (2001). Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochemical Journal 358, 437445.CrossRefGoogle ScholarPubMed
Schaffer, A. A., Petreikov, M., Miron, D., Fogelman, M., Spiegelman, M., Bnei-Moshe, Z., Shen, S., Granot, D., Hadas, R., Dai, N., Levin, I., Bar, M., Friedman, M., Pilowsky, M., Gilboa, N. & Chen, L. (1999). Modification of carbohydrate content in developing tomato fruit. HortScience 34, 10241027.CrossRefGoogle Scholar
Suzuki, Y., Odanaka, S. & Kanayama, Y. (2001). Fructose content and fructose-related enzyme activity during the fruit development of apple and Japanese pear. Journal of the Japanese Society for Horticultural Science 70, 1620.CrossRefGoogle Scholar
Uys, L., Botha, F. C., Hofmeyr, J. S. & Rohwer, J. M. (2007). Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 68, 23752392.CrossRefGoogle ScholarPubMed
Vizzotto, G., Pinton, R., Varanini, Z. & Costa, G. (1996). Sucrose accumulation in developing peach fruit. Physiologia Plantarum 96, 225230.CrossRefGoogle Scholar
Wu, B. H., Quilot, B., Kervella, J., Génard, M. & Li, S. H. (2003). Analysis of genotypic variation of sugar and acid contents in peaches and nectarines through the Principle Component Analysis. Euphytica 132, 375384.CrossRefGoogle Scholar