Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T17:52:37.697Z Has data issue: false hasContentIssue false

Application of a kinetic model to describe phosphorus metabolism in pigs fed a diet with a microbial phytase

Published online by Cambridge University Press:  08 April 2010

R. S. DIAS
Affiliation:
Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, OntarioN1G 2W1, Canada Animal Nutrition Laboratory, Centro de Energia Nuclear na Agricultura, Caixa Postal 96, CEP 13400-970, Piracicaba, SP, Brazil
S. LOPEZ*
Affiliation:
Instituto de Ganadería de Montaña (IGM), Universidad de León – Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Producción Animal, Universidad de León, E-24007León, Spain
J. A. MOREIRA
Affiliation:
Animal Nutrition Laboratory, Centro de Energia Nuclear na Agricultura, Caixa Postal 96, CEP 13400-970, Piracicaba, SP, Brazil
M. SCHULIN-ZEUTHEN
Affiliation:
Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, OntarioN1G 2W1, Canada
D. M. S. S. VITTI
Affiliation:
Animal Nutrition Laboratory, Centro de Energia Nuclear na Agricultura, Caixa Postal 96, CEP 13400-970, Piracicaba, SP, Brazil
E. KEBREAB
Affiliation:
Department of Animal Science, University of California, Davis, CA95616, USA
J. FRANCE
Affiliation:
Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, OntarioN1G 2W1, Canada
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The objective of the current study was to apply the Vitti–Dias model to investigate phosphorus (P) metabolism in growing pigs fed a diet supplemented with microbial phytase. The basal diet contained maize, defatted rice bran, vegetable oil, soybean meal, limestone, salt and a vitamin and mineral mix. There was no inorganic P in the diet and phytase was added at levels of 253, 759, 1265 and 1748 phytase units (PU)/kg of feed. The compartmental model included four pools of P: (1) gut lumen, (2) plasma, (3) bone and (4) soft tissue. A single dose of 32P was administered, and specific radioactivity was measured in plasma, faeces, bone and soft tissue (muscle, heart, liver and kidney) at different times post-dosing for calculation of P flows between pools. Total P absorbed showed a negative relationship with total P excreted in faeces and was strongly correlated with bone P retention, suggesting that absorbed P was channelled to bone to address its physiological growth. Average efficiency of metabolic utilization of absorbed P was estimated to be 0·94, with 0·52 g/g of total net P balance being accreted in bone and the rest in soft tissue (including muscle and some vital organs). The Vitti–Dias model provided suitable representation of P interchange between compartments (in particular, flows between gut and plasma and partitioning of available P between bone and soft tissue), resulting in estimates of P flows comparable with values calculated from balance data.

Type
Modelling Animal Systems Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ajakaiye, A., Fan, M. Z., Archbold, T., Hacker, R. R., Forsberg, C. W. & Phillips, J. P. (2003). Determination of true digestive utilization of phosphorus and the endogenous phosphorus outputs associated with soybean meal for growing pigs. Journal of Animal Science 81, 27662775.CrossRefGoogle ScholarPubMed
Anugwa, F. O. I., Varel, V. H., Dickson, J. S., Pond, W. G. & Krook, L. P. (1989). Effects of dietary fiber and protein concentration on growth, feed efficiency, visceral organ weights and large intestine microbial populations of swine. Journal of Nutrition 119, 879886.CrossRefGoogle ScholarPubMed
Association of Official Analytical Chemists. (1995). Official Methods of Analysis of AOAC, 16th edn.Arlington, VA: Association of Official Analytical Chemists International.Google Scholar
Bedford, M. R. & Schulze, H. (1998). Exogenous enzymes for pigs and poultry. Nutrition Research Reviews 11, 91–114.CrossRefGoogle ScholarPubMed
Brady, S. M., Callan, J. J., Cowan, D., McGrane, M. & O'Doherty, J. V. (2002). Effect of phytase inclusion and calcium/phosphorus ratio on the performance and nutrient retention of grower–finisher pigs fed barley/wheat/soya bean meal-based diets. Journal of Science and Food Agriculture 82, 17801790.CrossRefGoogle Scholar
Brumm, M. C. (2001). Phytase in swine diets. 2001 Nebraska Swine Report, pp. 47. Lincoln, NE: University of Nebraska. Available online at http://digitalcommons.unl.edu/coopextswine/93Google Scholar
Cromwell, G. L. (1979). Availability of phosphorus in feedstuffs for swine. Proceedings of the Distillers Feed Conference 34, 4052.Google Scholar
Cromwell, G. L., Coffey, R. D., Monegue, H. J. & Randolph, J. H. (1995 a). Efficacy of low-activity, microbial phytase in improving the bioavailability of phosphorus in corn–soybean meal diets for pigs. Journal of Animal Science 73, 449456.CrossRefGoogle ScholarPubMed
Cromwell, G. L., Coffey, R. D., Parker, G. R., Monegue, H. J. & Randolph, J. H. (1995 b). Efficacy of a recombinant-derived phytase in improving the bioavailability of phosphorus in corn–soybean meal diets for pigs. Journal of Animal Science 73, 20002008.CrossRefGoogle ScholarPubMed
Dias, R. S., Kebreab, E., Vitti, D. M. S. S., Roque, A. P., Bueno, I. C. S. & France, J. (2006). A revised model for studying phosphorus and calcium kinetics in growing sheep. Journal of Animal Science 84, 27872794.CrossRefGoogle ScholarPubMed
Dias, R. S., Kebreab, E., Vitti, D. M. S. S., Portilho, F. P., Louvandini, H. & France, J. (2007). Phosphorus kinetics in lambs fed different levels of dicalcium phosphate. Journal of Agricultural Science, Cambridge 145, 509516.CrossRefGoogle Scholar
Düngelhoef, M., Rodehutscord, M., Spiekers, H. & Pfeffer, E. (1994). Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Animal Feed Science and Technology 49, 110.CrossRefGoogle Scholar
Dutra, W. M.JR., Ferreira, A. S., Donzele, J. L., Euclydes, R. F., Tarouco, J. U. & Cardoso, L. L. (2001). Predição de curvas de crescimento de tecidos de fêmeas suínas por intermédio da função alométrica estendida. Revista Brasileira de Zootecnia – Brazilian Journal of Animal Science 30, 10071014.CrossRefGoogle Scholar
Fernández, J. A. (1995). Calcium and phosphorus metabolism in growing pigs. I. Absorption and balances studies. Livestock Production Science 41, 233241.CrossRefGoogle Scholar
Figueredo, A. V., Fialho, E. T., Vitti, D. M. S. S., Lopes, J. B., Silva Filho, J. C., Teixeira, A. S. & Lima, J. A. F. (2000). Ação da fitase sobre a disponibilidade biológica do fósforo, por intermédio da técnica de diluição isotópica, em dietas com farelo de arroz integral para suínos. Revista Brasileira de Zootecnia – Brazilian Journal of Animal Science 29, 177182.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry 66, 375400.CrossRefGoogle Scholar
Gomes, P. C., Rostagno, H. S., Pereira, J. A. A., Costa, P. M. A. & Lima, J. A. F. (1989). Exigência de fósforo total e disponível para suínos na fase de crescimento. Revista Brasileira de Zootecnia – Brazilian Journal of Animal Science 18, 232239.Google Scholar
Han, Y. M., Yang, F., Zhou, A. G., Miller, E. R., Ku, P. K., Hogberg, M. G. & Lei, X. G. (1997). Supplemental phytase of microbial and cereal sources improve dietary phytate phosphorus utilization by pigs from weaning through finishing. Journal of Animal Science 75, 10171025.CrossRefGoogle ScholarPubMed
International Atomic Energy Agency (IAEA). (1979). Laboratory Training Manual on the Use of Nuclear Techniques in Animal Research. Technical Report Series No. 193. Vienna, Austria: IAEA.Google Scholar
Johansen, K. & Poulsen, H. D. (2003). Substitution of inorganic phosphorus in pig diets by microbial phytase supplementation – a review. Pig News and Information 24, 77N82N.Google Scholar
Jongbloed, A. W. (1987). Phosphorus in the feeding of pigs: effect of diet on the absorption and retention of phosphorus by growing pigs. Ph.D. dissertation, Wageningen Agricultural University, The Netherlands.Google Scholar
Kemme, P. A., Jongbloed, A. W., Mroz, Z. & Beynen, A. C. (1997). The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. Journal of Animal Science 75, 21292138.CrossRefGoogle ScholarPubMed
Kemme, P. A., Schlemmer, U., Mroz, Z. & Jongbloed, A. W. (2006). Monitoring the stepwise phytate degradation in the upper gastrointestinal tract of pigs. Journal of Science of Food and Agriculture 86, 612622.CrossRefGoogle Scholar
Kerr, B. J., McKeith, F. K. & Easter, R. A. (1995). Effect on performance and carcass characteristics of nursery to finisher pigs fed reduced crude protein, amino acid-supplemented diets. Journal of Animal Science 73, 433440.CrossRefGoogle ScholarPubMed
Ketaren, P. P., Batterham, E. S., White, E., Farrell, D. J. & Milthorpe, B. K. (1993). Phosphorus studies in pigs. 1. Available phosphorus requirements of grower/finisher pigs. British Journal of Nutrition 70, 249268.CrossRefGoogle ScholarPubMed
Kies, A. K., Gerrits, W. J. J., Schrama, J. W., Heetkamp, M. J. W., Van Der Linden, K. L., Zandstra, T. & Verstegen, M. W. A. (2005). Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. Journal of Nutrition 135, 11311138.CrossRefGoogle ScholarPubMed
Lofgreen, G. P. & Kleiber, M. (1953). The availability of the phosphorus in alfalfa hay. Journal of Animal Science 12, 366371.CrossRefGoogle Scholar
Matsui, T., Nakagawa, Y., Tamura, A., Watanabe, C., Fujita, K., Nakajima, T. & Yano, H. (2000). Efficacy of yeast phytase in improving phosphorus biovailability in a corn–soybean meal-based diet for growing pigs. Journal of Animal Science 78, 9499.CrossRefGoogle Scholar
Nascimento Filho, V. F. & Lobão, A. O. (1977). Detecção de P-32 em amostras de origem animal e vegetal por efeito Cerenkov, cintilação líquida e detector GM. Boletim Ciêntifico, 48. Piracicaba, Brazil: CENA.Google Scholar
National Research Council. (1998). Nutrient Requirement of Swine. 10th revised edn, Washington, DC: National Academy Press.Google Scholar
Qian, H., Kornegay, E. T. & Conner, D. E. JR. (1996). Adverse effects of wide calcium:phosphorus ratios on supplemental phytase efficacy for weanling pigs fed two dietary phosphorus levels. Journal of Animal Science 74, 12881297.CrossRefGoogle ScholarPubMed
Rodehutscord, M., Haverkamp, R. & Pfeffer, E. (1998). Inevitable losses of phosphorus in pigs, estimated from balance data using diets deficient in phosphorus. Archives of Animal Nutrition 51, 2738.Google ScholarPubMed
Rodehutscord, M., Faust, M. & Pfeffer, E. (1999). The course of phosphorus excretion in growing pigs fed continuously increasing phosphorus concentrations after a phosphorus depletion. Archives of Animal Nutrition 52, 323334.Google ScholarPubMed
Rostagno, H. S., Albino, L. F. T., Donzele, J. L., Gomes, P. C., Ferreira, A. S., Oliveira, R. F. & Lopes, D. C. (2000). Tabelas Brasileiras para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais (Brazilian Tables for Poultry and Swine: Feed Composition and Nutrient Requirements), 1st edn.Viçosa, Brazil: Imprensa Universitária.Google Scholar
Sarruge, J. R. & Haag, H. P. (1974). Análises Químicas em Plantas [Chemical Analysis of Plants]. Piracicaba, Brazil: Departamento de Química, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo.Google Scholar
SAS (1999). SAS/STAT User's Guide, Release 8.00. Cary, NC: SAS Institute.Google Scholar
Schindler, B., Lantzsch, H.-J., Mosenthin, R., Biesalski, H. K. & Drochner, W. (1997). Dose-response effects of microbial phytase on P absorption in growing pigs, fed P reduced diets. In Digestive Physiology in Pigs, Proceedings of the VIIth International Symposium on Digestive Physiology in Pigs (Eds Laplace, J. P., Février, C. & Barbeau, A.), pp. 441445. EAAP Publication No. 88. Saint Malo, France: European Association for Animal Production, Institut National de la Recherche Agronomique.Google Scholar
Schulin-Zeuthen, M., Lopes, J. B., Kebreab, E., Vitti, D. M. S. S., Abdalla, A. L., Haddad, M. D., Crompton, L. A. & France, J. (2005). Effects of phosphorus intake on phosphorus flow in growing pigs: application and comparison of two models. Journal of Theoretical Biology 236, 115125.CrossRefGoogle ScholarPubMed
Selle, P. H. & Ravindran, V. (2008). Phytate-degrading enzymes in pig nutrition. Livestock Science 113, 99–122.CrossRefGoogle Scholar
Selle, P. H., Cowieson, A. J. & Ravindran, V. (2009). Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock Science 124, 126141.CrossRefGoogle Scholar
Traylor, S. L., Cromwell, G. L., Lindemann, M. D. & Knabe, D. A. (2001). Effects of level of supplemental phytase on ileal digestibility of amino acids, calcium, and phosphorus in dehulled soybean meal for growing pigs. Journal of Animal Science 79, 26342642.CrossRefGoogle ScholarPubMed
Vasupen, K., Yuangklang, C., Wongsuthavas, S., Panyakaew, P., Mitchaothai, J. & Beynen, A. C. (2008). Growth performance, carcass and meat characteristics of female and male Kadon pigs. Journal of Biological Sciences 8, 671674.CrossRefGoogle Scholar
Vitti, D. M. S. S., Kebreab, E., Lopes, J. B., Abdalla, A. L., De Carvalhos, F. F. R., De Resende, K. T., Crompton, L. A. & France, J. (2000). A kinetic model of phosphorus metabolism in growing goats. Journal of Animal Science 78, 27062712.CrossRefGoogle ScholarPubMed
Young, L. G., Leunissen, M. & Atkinson, J. L. (1993). Addition of microbial phytase to diets of young pigs. Journal of Animal Science 71, 21472150.CrossRefGoogle ScholarPubMed
Zimmermann, B., Lantzsch, H.-J., Mosenthin, R., Shoner, F.-J., Biesalski, H. K. & Drochner, W. (2002). Comparative evaluation of the efficacy of cereal and microbial phytases in growing pigs fed diets with marginal phosphorus supply. Journal of Science of Food and Agriculture 82, 12981304.CrossRefGoogle Scholar
Zimmermann, B., Lantzsch, H.-J., Mosenthin, R., Biesalski, H. K. & Drochner, W. (2003). Additivity of the effect of cereal and microbial phytases on apparent phosphorus absorption in growing pigs fed diets with marginal P supply. Animal Feed Science Technology 104, 143152.CrossRefGoogle Scholar