Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T18:39:26.320Z Has data issue: false hasContentIssue false

Aluminium and acid soils

Published online by Cambridge University Press:  27 March 2009

J. Line
Affiliation:
(School of Agriculture, Cambridge.)

Extract

The addition of aluminium salts to culture solutions and to soils will bring about certain changes; these may be summed up as follows:

1. A change in the hydrogen ion concentration, which will vary in amount with the original buffer properties of the solution or the soil.

2. A change in the buffer properties of the solution or the soil; the hydrogen in concentration of a culture solution containing an aluminium salt will tend to remain more constant than that of a normal culture solution during the period of growth of the plant, when both start at the same pH value.

3. Precipitation of soluble phosphate as aluminium phosphate except in solutions or soils more acid than pH 3·5 to 4·0; this might lead to phosphate starvation in water cultures but would have little or no effect in a soil, where the particles would remain accessible to the plant roots.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1926

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES TO LITERATURE

(1)Abbott, J. B., Conner, S. D. and Smalley, H. R. (1913). Ind. Agr. Exp. Sta. Bull. 170.Google Scholar
(2)Bamber, H. K. G. (1909). Trans. Concrete Inst. 1, 106.Google Scholar
(3)Bamber, H. K. G. (1909). Concrete, 4, 193.Google Scholar
(4)Barnette, R. M. and Shive, J. W. (1923). So. Sci. 15, 413.Google Scholar
(5)Blair, A. W. and Prince, A. L. (1923). So. Sci. 15, 109.Google Scholar
(6)Blum, W. (1913). Journ. Am. Chem. Soc. 35, 1499.CrossRefGoogle Scholar
(7)Burgess, P. S. (1922). R.I. Agr. Exp. Sta. Bull. 189.Google Scholar
(8)Burgess, P. S. (1923). So. Sci. 15, 130.Google Scholar
(9)Burgess, P. S. (1923). So. Sci. 15, 407.Google Scholar
(10)Caven, R. M. and Hill, A. (1897). Journ. Soc. Chem. Ind. 16, 29.Google Scholar
(11)Clark, W. M. (1920). Determination of hydrogen ions, p. 48.Google Scholar
(12)Conner, S. D. (1916). Journ. Indus. Engin. Chem. 8, 35.CrossRefGoogle Scholar
(13)Conner, S. D. (1921). Journ. Am. Soc. Agron. 13, 113.CrossRefGoogle Scholar
(14)Conner, S. D. and Sears, O. H. (1922). So. Sci. 13, 23.Google Scholar
(15)Crowther, E. M. (1925). Journ. Agr. Sci. 15, 201.CrossRefGoogle Scholar
(16)Denison, I. A. (1922). So. Sci. 13, 81.Google Scholar
(17)Desch, C. H.Chem. and Testing of Cement, p. 60.Google Scholar
(18)Gile, P. L. (1923). Journ. Am. Soc. Agron. 15.CrossRefGoogle Scholar
(19)Gmelin-Kraut, . Anal. Chem. Bd. 2, Theil 2, 686.Google Scholar
(20)Hardy, F. (1922). W.I. Bulletin, 19, 1.Google Scholar
(21)Hartwell, B. L. and Pember, F. R. (1918). So. Sci. 6, 259.Google Scholar
(22)Hoagland, D. R. (1919). Journ. Agr. Res. 18, 73.Google Scholar
(23)Hoffer, G. N. and Carr, R. H. (1923). Journ. Agr. Res. 23, 10.Google Scholar
(24)Kelley, W. P. and McGeorge, W. (1913). Hawaii Agr. Exp. Sta. Bull. 30.Google Scholar
(25)Kratzmann, E. (1913). Sitzber. K. Akad. Wiss., Math.-Nat. Kl. Abt. 1, Bd. 122, 311.Google Scholar
(26)Le Chatelier, H. (1883). Comp. Rend. 96, 1058.Google Scholar
(27)Le Chatelier, H. (1887). Annales des Mines, 11, 345.Google Scholar
(28)Marais, J. S. (1922). So. Sci. 13, 353.Google Scholar
(29)Mazé, P. (1915). Comp. Rend. Acad. Sci. (Paris), 160, VI, 211.Google Scholar
(30)Mirasol, J. J. (1920). So. Sci. 10, 153.Google Scholar
(31)Miyake, K. (1916). Journ. Biol. Chem. 25, 23.CrossRefGoogle Scholar
(32)Miyake, K., Tamachi, I. and Konno, J. (1924). So. Sci. 18, 279.Google Scholar
(33)Morse, F. W. (1918). Journ. Indus. Engin. Chem. 10, 125.CrossRefGoogle Scholar
(34)Plummer, J. K. (1918). Journ. Agr. Res. 12, 19.Google Scholar
(35)Rice, F. E. (1916). Journ. Phys. Chem. 20, 214.CrossRefGoogle Scholar
(36)Rothert, W. (1906). Bot. Ztg. 1, 94, 43.Google Scholar
(37)Rupprecht, R. W. and Morse, F. W. (1915). Mass. Agr. Exp. Sta. Bull. 165.Google Scholar
(38)Shepherd, E. S., Rankin, G. A. and Wright, F. E. (1909). Am. Journ. Sci. 28, 293.CrossRefGoogle Scholar
(39)Stoklasa, J. (1918). Biochem. Zeitschr. 88, 292.Google Scholar
(40)Stoklasa, J. (1918). Biochem. Zeitschr. 91, 137.Google Scholar
(41)Strasburger, E. (1908). Text-Book of Botany, p. 192.Google Scholar
(42)Theron, J. J. (1924). Univ. Cal. Pub. Agr. Sci. 4, 14.Google Scholar
(43)Thomson, R. T. (1886). Journ. Soc. Chem. Ind. 5, 152.Google Scholar
(44)Treadwell, F. P. and Hall, W. T. (1919). Anal. Chem. 2, 82.Google Scholar
(45)Wolkoff, M. I. (1924). So. Sci. 17, 39.Google Scholar
(46)Wolkoff, M. I. (1924). So. Sci. 18, 469.Google Scholar