Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T05:12:49.810Z Has data issue: false hasContentIssue false

Agronomic traits, ensilability and nutritive value of five pearl millet cultivars grown in a Brazilian semi-arid region

Published online by Cambridge University Press:  14 October 2015

R. D. DOS SANTOS*
Affiliation:
Embrapa Semi-Arid, Brazilian Agricultural Research Corporation (Embrapa), Petrolina, Pernambuco, Brazil Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
A. L. A. NEVES
Affiliation:
Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil
L. G. R. PEREIRA
Affiliation:
Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil
L. E. SOLLENBERGER
Affiliation:
University of Florida, Gainesville, Florida, USA
J. A. S. RODRIGUES
Affiliation:
Embrapa Maize and Sorghum, Brazilian Agricultural Research Corporation (Embrapa), Sete Lagoas, Minas Gerais, Brazil
J. N. TABOSA
Affiliation:
Agronomic Institute of Pernambuco (IPA), Recife, Pernambuco, Brazil
R. S. VERNEQUE
Affiliation:
Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil
G. F. OLIVEIRA
Affiliation:
Federal University of Sergipe, Aracaju, Sergipe, Brazil
D. G. JAYME
Affiliation:
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
L. C. GONÇALVES
Affiliation:
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Pearl millet (Pennisetum glaucum (L.) R.) could play an important role as a feed source for ruminants in arid and semi-arid zones of the world owing to its high yield and drought tolerance. The current paper assessed the agronomic characteristics, ensilability, intake and digestibility of five Brazilian pearl millet cultivars (IPA Bulk1BF, BRS 1501, CMS-03, CMS-01 and BN-2) in a typical Brazilian northeastern semi-arid climate. Forage was harvested at the dough stage of grain maturity (growth stage 86 according to the BBCH scale) and ensiled under laboratory and farm conditions. Apparent digestibility of the silages was determined using 25 Santa Inês male lambs. The cultivars CMS-01, CMS-03 and BN-2 out-performed the others in terms of dry matter (DM) and digestible DM yield/ha. At DM partitioning among plant tissues, the cultivar IPA Bulk1BF had a greater DM associated with panicles and one of the greatest concentrations of organic matter, lactic acid and in vitro dry matter digestibility among the five cultivars. The cultivar BRS 1501 had greater butyric acid concentration as well as one of the highest pH values. Silage produced from BN-2 not only contained greater acetic acid concentration, but also showed one of the greatest total volatile fatty acid concentrations. There were no differences in feed intake and digestibility of nutrients and fibre fractions across all cultivars. Silage made from BN-2 resulted in greater urinary excretion of nitrogen than those produced from BRS 1501. Under the conditions of the present study, the results obtained for production of DM and digestible dry matter, and the ratio of plant fractions, indicates the possible use of these cultivars for silage production in the Brazilian semi-arid region.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, R. F., Jones, R. L. & Conway, P. L. (1984). High-performance liquid-chromatography of microbial-acid metabolites. Journal of Chromatography B: Biomedical Sciences and Applications 336, 125137.CrossRefGoogle ScholarPubMed
Aguiar, E. A., Lima, E. F. C., Santos, M. V. F., Carvalho, F. F. R., Guim, A., Medeiros, H. R. & Borges, A. Q. (2006). Yield and chemical composition of chopped tropical grass hays. Revista Brasileira de Zootecnia 35, 22262233.CrossRefGoogle Scholar
Akromah, R., Afribeh, D. & Abdulai, M. S. (2008). Genetic variation and trait correlations in a bird-resistant pearl millet landrace population. African Journal of Biotechnology 7, 18471850.Google Scholar
Amer, S., Hassanat, F., Berthiaume, R., Seguin, P. & Mustafa, A. F. (2012). Effects of water soluble carbohydrate content on ensiling characteristics, chemical composition and in vitro gas production of forage millet and forage sorghum silages. Animal Feed Science and Technology 177, 2329.CrossRefGoogle Scholar
Amodu, J. T., Kallah, M. S., Adeyinka, I. A., Alawa, J. P. & Lakpini, C. A. M. (2008). The nutritive value of silages made from mixtures of pearl millet (Pennisetum americanum) and lablab (Lablab purpureus) as feed for Yankasa rams. Asian Journal of Animal and Veterinary Advances 3, 7884.Google Scholar
AOAC (Association of Official Analytical Chemists) (2005). Official Methods of Analysis. 18th edn, methods 920·39, 942·05, 934·01, Arlington, VA: AOAC.Google Scholar
Bashir, E. M. A., Ali, A. M., Ali, A. M., Melchinger, A. E., Parzies, H. K. & Haussmann, B. I. G. (2014). Characterization of Sudanese pearl millet germplasm for agro-morphological traits and grain nutritional values. Plant Genetic Resources 12, 3547.CrossRefGoogle Scholar
BBCH (Biologische Bundesanstallt für Land-und Forstwirtschaft) (2001). Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph. Berlin: Blackwell Wissenschafts-Verlag.Google Scholar
Bell, M. A. & Fischer, R. A. (1994). Guide to Plant and Crop Sampling: Measurements and Observations for Agronomic and Physiological Research in Small Grain Cereals. Wheat Special Report no. 32. Mexico, DF: CIMMYT.Google Scholar
CONCEA (National Council for the Control of Animal Experimentation) (2008). Procedures for The Scientific Use of Animals. Based on the CLAUSE VII of the 1st Paragraph in Article 225 of the Brazilian Federal Constitution. Brasília, DF, Brazil: Brazilian Government through the National Council for the Control of Animal Experimentation (CONCEA) and Institutional Animal Care and Use Committees (CEUA).Google Scholar
Costa, A. C. T., Geraldo, J., Pereira, M. B. & Pimentel, C. (2005). Thermal unities and yield of pearl millet genotypes sown in two seasons. Pesquisa Agropecuária Brasileira 40, 11711177.CrossRefGoogle Scholar
da Silva, J. F. C. & Leão, M. I. (1979). Fundamentos de Nutrição dos Ruminantes. Piracicaba, SP, Brazil: Livroceres.Google Scholar
da Silva, T. C., Santos, E. M., Azevedo, J. A. G., Edvan, R. L., Perazzo, A. F., Pinho, R. M. A., Rodrigues, J. A. S. & da Silva, D. S. (2011). Agronomic divergence of sorghum hybrids for silage yield in the semiarid region of Paraiba. Revista Brasileira de Zootecnia 40, 18861893.CrossRefGoogle Scholar
Deng, X. P., Shan, L., Zhang, H. & Turner, N. C. (2006). Improving agricultural water use efficiency in arid and semiarid areas of China. Agricultural Water Management 80, 2340.CrossRefGoogle Scholar
de Rouw, A. (2004). Improving yields and reducing risks in pearl millet farming in the African Sahel. Agricultural Systems 81, 7393.CrossRefGoogle Scholar
Devasenapathy, P., Ramesh, T. & Gangwar, B. (2008). Efficiency Indices for Agriculture Management Research. New Delhi, India: New India Publishing Agency.CrossRefGoogle Scholar
dos Santos, H. G., Jacomine, P. K. T., dos Anjos, L. H. C., de Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Cunha, T. J. F. & de Oliveira, J. B. (2013). Sistema Brasileiro de Classificação de Solos. Brasília, DF, Brazil: Embrapa.Google Scholar
dos Santos, R. D., Pereira, L. G. R., Neves, A. L. A., Azevedo, J. A. G., de Moraes, S. A. & Costa, C. T. F. (2010). Agronomic characteristics of maize varieties for silage production in the submédio São Francisco river valley. Acta Scientiarum. Animal Sciences 32, 367373.Google Scholar
dos Santos, R. D., Pereira, L. G. R., Neves, A. L. A., de Araujo, G. G. L., de Aragao, A. S. L. & Chizzotti, M. L. (2011). Intake and total apparent digestibility in lambs fed six maize of maize varieties in the Brazilian Semi-arid. Revista Brasileira de Zootecnia 40, 29222928.CrossRefGoogle Scholar
Guimarães Júnior, R., Gonçalves, L. C., Rodrigues, J. A. S., Pires, D. A. A., Jayme, D. G., Rodriguez, N. M. & Saliba, E. O. S. (2009). Agronomic evaluation of pearl millet genotypes (P. Glaucum) planted in summer/fall growing season. Archivos de Zootecnia 58, 629632.Google Scholar
Hassanat, F., Mustafa, A. F. & Seguin, P. (2006). Chemical composition and ensiling characteristics of normal and brown midrib pearl millet harvested at two stages of development in southwestern Québec. Canadian Journal of Animal Science 86, 7180.Google Scholar
Hill, G. M., Utley, P. R., Gates, R. N., Hanna, W. W. & Johnson, J. C. (1999). Pearl millet silage for growing beef heifers and steers. Journal of Production Agriculture 12, 653658.CrossRefGoogle Scholar
ICRISAT (2009). Food Security and Diversification in the Drylands. Annual Report 2009. Patancheru, India: ICRISAT.Google Scholar
Khan, S. H., Shahzad, M. A., Nisa, M. & Sarwar, M. (2011). Nutrients intake, digestibility, nitrogen balance and growth performance of sheep fed different silages with or without concentrate. Tropical Animal Health and Production 43, 795801.CrossRefGoogle ScholarPubMed
Kholova, J., Hash, C. T., Kumar, P. L., Yadav, R. S., Kocova, M. & Vadez, V. (2010). Terminal drought-tolerant pearl millet (Pennisetum glaucum (L.) R. Br.) have high leaf ABA and limit transpiration at high vapour pressure deficit. Journal of Experimental Botany 61, 14311440.CrossRefGoogle ScholarPubMed
Kung, L. & Ranjit, N. K. (2001). The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science 84, 11491155.CrossRefGoogle ScholarPubMed
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607610.CrossRefGoogle ScholarPubMed
Maiti, R. & Wesche-Ebeling, P. (1997). Pearl Millet Science. Enfield: Science Publishers Inc.Google Scholar
McDonald, P., Henderson, A. R. & Heron, S. J. E. (1991). The Biochemistry of Silage. Kingston, Kent, UK: Chalcombe Publications.Google Scholar
McDougall, E. I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemical Journal 43, 99109.CrossRefGoogle ScholarPubMed
Messman, M. A., Weiss, W. P., Henderlong, P. R. & Shockey, W. L. (1992). Evaluation of pearl millet and field peas plus triticale silages for midlactation dairy cows. Journal of Dairy Science 75, 27692776.CrossRefGoogle ScholarPubMed
Nielsen, D. C., Vigil, M. F. & Benjamin, J. G. (2006). Forage yield response to water use for dryland corn, millet, and triticale in the Central Great Plains. Agronomy Journal 98, 992998.CrossRefGoogle Scholar
Norman, M. J. T., Pearson, C. J. & Searle, P. G. E. (1995). Pearl millet (Pennisetum glaucum). In The Ecology of Tropical Food Crops, 2nd edn (Eds Norman, M. J. T., Pearson, C. J. & Searle, P. G. E.), pp. 164184. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Oseni, T. O. & Masarirambi, M. T. (2011). Effect of climate change on maize (Zea mays) production and food security in Swaziland. American-Eurasian Journal Agricultural and Environmental Sciences 11, 385391.Google Scholar
Pires, F. R., de Assis, R. L., Silva, G. P., Braz, A. J. B. P., Santos, S. C., Vieira Neto, S. A. & de Sousa, J. P. G. (2007). Desempenho agronômico de variedades de milheto em razão da fenologia em pré-safra (Agronomic acting of cultivars of pearl millet in reason of the fenology in pre-cropping). Bioscience Journal 23, 4149. (In Portuguese).Google Scholar
SAS (2002). SAS User's Guide, 9·1 edn. Cary, NC: SAS Institute Inc.Google Scholar
Sebastian, S., Phillip, L. E., Fellner, V. & Idziak, E. S. (1996). Comparative assessment of bacterial inoculation and propionic acid treatment on aerobic stability and microbial populations of ensiled high-moisture ear corn. Journal of Animal Science 74, 447456.CrossRefGoogle ScholarPubMed
Silungwe, D., Millner, J. P. & McGill, C. R. (2010). Evaluation of sorghum, sudan-grass and pearl millet cultivars in Manawatu. Agronomy New Zealand Journal 40, 110.Google Scholar
Singh, B. R. & Singh, D. P. (1995). Agronomic and physiological responses of sorghum, maize and pearl millet to irrigation. Field Crops Research 42, 5767.CrossRefGoogle Scholar
Sivakumar, M. V. K., Das, H. P. & Brunini, O. (2005). Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics. In Increasing Climate Variability and Change: Reducing the Vulnerability of Agriculture and Forestry (Eds Salinger, J., Sivakumar, M. V. K. & Motha, R. P.), pp. 3172. Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: 2. Carbohydrate and protein availability. Journal of Animal Science 70, 35623577.CrossRefGoogle Scholar
Tilley, J. M. A. & Terry, R. A. (1963). A two stage technique for the in vitro digestion of forage crops. Grass and Forage Science 18, 104111.CrossRefGoogle Scholar
Tomich, T. R., Pereira, L. G. R., Gonçalves, L. C., Tomich, R. G. P. & Borges, I. (2003). Características Químicas para avaliação do Processo Fermentativo de Silagens: uma Proposta para Qualificação da Fermentação. Documents Series Embrapa Pantanal 57. Corumbá, Brazil: Embrapa Pantanal.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Ward, J. D., Redfearn, D. D., McCormick, M. E. & Cuomo, G. J. (2001). Chemical composition, ensiling characteristics, and apparent digestibility of summer annual forages in a subtropical double-cropping system with annual ryegrass. Journal of Dairy Science 84, 177182.CrossRefGoogle Scholar
Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39, 971974.CrossRefGoogle Scholar
Weiss, W. P. & Wyatt, D. J. (2000). Effect of oil content and kernel processing of corn Silage on digestibility and milk production by dairy cows. Journal of Dairy Science 83, 351358.CrossRefGoogle ScholarPubMed
Yadav, O. P. & Bidinger, F. R. (2008). Dual-purpose landraces of pearl millet (Pennisetum glaucum) as sources of high stover and grain yield for arid zone environments. Plant Genetic Resources: Characterization and Utilization 6, 7378.CrossRefGoogle Scholar