Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T23:41:13.892Z Has data issue: false hasContentIssue false

Adaptability to organic farming of lentil (Lens culinaris Medik.) varieties developed from conventional breeding programmes

Published online by Cambridge University Press:  27 July 2010

D. N. VLACHOSTERGIOS*
Affiliation:
National Agricultural Research Foundation (NAGREF), Fodder Crops and Pasture Institute, 413 35 Larissa, Greece
A. S. LITHOURGIDIS
Affiliation:
Department of Agronomy, Aristotle University Farm of Thessaloniki, 570 01 Thermi, Greece
D. G. ROUPAKIAS
Affiliation:
Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The development of organic agriculture has raised the demand for crop varieties well-adapted to organic farming systems. Most of the varieties presently cultivated in organic agriculture were developed from conventional breeding programmes. The objective of the present work was to study the adaptability to organic farming systems of lentil (Lens culinaris Medik.) varieties developed from conventional breeding programmes. Twenty varieties were evaluated over five environments under organic and conventional farming systems from 2005 to 2007. Genotype×system interactions (GSI) for grain yield were significantly different in four out of the five environments and GSI explained 0·03–0·17 of the variance. Spearman's rank correlation index of the 20 varieties between the conventional and organic system ranged from 0·27 to 0·93 in the five environments. Direct selection of the top five varieties in organic systems resulted in significantly higher grain yields than indirect selection in one out of the five environments. However, among the top five varieties, the highest yielding varieties under conventional farming systems were not always the highest yielding varieties under organic farming systems. These results indicate that the demands of organic agriculture for yield performance could be only partially satisfied by varieties developed under conventional breeding programmes.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atlin, G. N. & Frey, K. J. (1989). Predicting the relative effectiveness of direct versus indirect selection for oat yield in three types of stress environments. Euphytica 44, 137142.CrossRefGoogle Scholar
Bayaa, B., Erskine, W. & Singh, M. (1997). Screening lentil for resistance to Fusarium wilt: methodology and sources of resistance. Euphytica 98, 6974.CrossRefGoogle Scholar
Brancourt-Hulmel, M., Heumez, E., Pluchard, P., Beghin, D., Depatureaux, C., Giraud, A. & Le Gouis, J. (2005). Indirect versus direct selection of winter wheat for low-input or high-input levels. Crop Science 45, 14271431.CrossRefGoogle Scholar
Burger, H., Schloen, M., Schmidt, W. & Geiger, H. H. (2008). Quantitative genetic studies on breeding maize for adaptation to organic farming. Euphytica 163, 501510.CrossRefGoogle Scholar
Calhoun, D. S., Gebeyehu, G., Miranda, A., Rajaram, S. & Van Gikhel, M. (1994). Choosing evaluation environments to increase wheat grain yield under drought conditions. Crop Science 34, 673678.CrossRefGoogle Scholar
Ceccarelli, S., Grando, S. & Hamblin, J. (1992). Relationship between barley grain yield measured in low- and high-yielding environments. Euphytica 64, 4958.CrossRefGoogle Scholar
Ghaouti, L. & Link, W. (2009). Local vs. formal breeding and inbred line vs. synthetic cultivar for organic farming: Case of Vicia faba L. Field Crops Research 110, 167172.CrossRefGoogle Scholar
National Statistical Service (2005). http://www.statistics.gr/Google Scholar
Hopf, M. (1962). Bericht Uber die Untersuchung von Samen und Holzkohlenresten von der Argissa-Magula aus den präkeramischen bis mittelbronzezeitlichen Schichten. In Die Deutschen Ausgrabungen auf der Argissa-Magula in Thessalien. Vol. I (Eds Milojcic, V., Boessneck, J. M. & Hopf, M.), pp. 101119. Bonn: Rudolf Habelt Verlag.Google Scholar
Jones, H., Clarke, S., Haigh, Z., Pearce, H. & Wolfe, M. (2010). The effect of the year of wheat variety release on productivity and stability of performance on two organic and two non-organic farms. Journal of Agricultural Science, Cambridge 148, 303317.CrossRefGoogle Scholar
Lammerts van Bueren, E. T. (2002). Organic plant breeding and propagation: concepts and strategies. PhD Thesis, Wageningen University, Wageningen, The Netherlands.Google Scholar
Lammerts van Bueren, E. T., Struik, P. C. & Jacobsen, E. (2002). Ecological concepts in organic farming and their consequences for an organic ideotype. Netherlands Journal of Agricultural Science 50, 126.Google Scholar
Lammerts van Bueren, E. T., Struik, P. C., Tiemens-Hulscher, M. & Jacobsen, E. (2003). Concepts of intrinsic value and integrity of plants in organic plant breeding and propagation. Crop Science 43, 19221929.CrossRefGoogle Scholar
Lorenzana, R. E. & Bernardo, R. (2008). Genetic correlation between corn performance in organic and conventional production systems. Crop Science 48, 903910.CrossRefGoogle Scholar
Löschenberger, F., Fleck, A., Grausgruber, G., Hetzendorfer, H., Hof, G., Lafferty, J., Marn, M., Neumayer, A., Pfaffinger, G. & Birschitzky, J. (2008). Breeding for organic agriculture – the example of winter wheat in Austria. Euphytica 163, 469480.CrossRefGoogle Scholar
Malhotra, R. S., Singh, K. B., Bhullar, G. S. & Sethi, S. C. (1971). Phenotypic stability in lentil. Indian Journal of Genetics and Plant Breeding 31, 2125.Google Scholar
Muehlbauer, F. J., Summerfield, R. J., Kaiser, W. J., Clement, S. L., Boerboom, C. M., Welsh-Maddux, M. M. & Short, R. W. (2002). Principles and Practice of Lentil Production. Washington, DC: USDA.Google Scholar
Murphy, K. M., Campbell, K. G., Lyon, S. R. & Jones, S. S. (2007). Evidence of varietal adaptation to organic farming systems. Field Crops Research 102, 172177.CrossRefGoogle Scholar
Porter, P. M., Huggins, D. R., Perillo, C. A., Quiring, S. R. & Kent Crookston, R. (2003). Organic and other management strategies with two- and four-year crop rotations in Minnesota. Agronomy Journal 95, 233244.CrossRefGoogle Scholar
Ryan, M. H., Derrick, J. W. & Dann, P. R. (2004). Grain mineral concentrations and yield of wheat grown under organic and conventional management. Journal of the Science of Food and Agriculture 84, 207216.CrossRefGoogle Scholar
Sinebo, W., Gretzmacher, R. & Edelbauer, A. (2002). Environment of selection for grain yield in low fertilizer input barley. Field Crops Research 74, 151162.CrossRefGoogle Scholar
Stanhill, G. (1990). The comparative productivity of organic agriculture. Agriculture, Ecosystems and Environment 30, 126.CrossRefGoogle Scholar
Stoilova, T. & Chavdarov, P. (2006). Evaluation of lentil germplasm for disease resistance to Fusarium wilt (Fusarium oxysporum f. sp. lentis). Journal of Central European Agriculture 7, 121126.Google Scholar
Taylor, P., Lindbeck, K., Chen, W. & Ford, R. (2007). Lentil diseases. In Lentil: An Ancient Crop for Modern Times (Eds Yadav, S. S., McNeil, D. L. & Stevenson, P. C.), pp. 291313. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Vlachostergios, D. N., Mavromatis, A. G., Korkovelos, A. & Roupakias, D. G. (2006). Phylogenetic relationships of lentil (Lens culinaris Medik.) varieties. In Book of Abstracts of the 10th Panhellenic Congress: Plant Breeding and Rural Development (Eds Hellenic Scientific Society of Genetics and Plant Breeding), p. 129. Orestiada, Greece (in Greek): Hellenic Scientific Society of Genetics and Plant Breeding.Google Scholar
Vlachostergios, D. N. & Roupakias, D. G. (2008). Response to conventional and organic environment of thirty-six lentil (Lens culinaris Medik.) varieties. Euphytica 163, 449457.CrossRefGoogle Scholar
Wolfe, M. S., Baresel, J. P., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G., Loschenberger, F., Miedaner, T., Östergärd, H. & Lammerts van Bueren, E. T. (2008). Developments in breeding cereals for organic agriculture. Euphytica 163, 323346.CrossRefGoogle Scholar