Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T03:01:25.450Z Has data issue: false hasContentIssue false

Studies on the production of volatile fatty acids from grass by rumen liquor in an artificial rumen: III. A note on the volatile fatty acid production from crude fibre and grass cellulose

Published online by Cambridge University Press:  27 March 2009

A. John
Affiliation:
Division of Agricultural Biochemistry, Department of Biological Chemistry, University of Aberdeen
G. Barnett
Affiliation:
Division of Agricultural Biochemistry, Department of Biological Chemistry, University of Aberdeen
R. L. Reid
Affiliation:
Division of Agricultural Biochemistry, Department of Biological Chemistry, University of Aberdeen

Extract

1. The findings presented in two previous papers on the yields of volatile fatty acids, obtained by the action of rumen liquor in the artificial rumen, from fresh grass, dried grass and the water-soluble and water-insoluble separates of the latter, have been amplified by a consideration of the acids similarly obtained from specimens of chemically prepared crude fibre and cellulose, from four of the dried grass specimens.

2. The proportions of different volatile fatty acids from grass crude fibre and grass cellulose resemble those obtained from cellulose powder, propionic acid being produced in greatest relative yield.

3. A general review of these latter findings, in relation to those already presented, has been given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balch, D. A. (1952). Rep. Nat. Inst. Dairy., Reading, p. 65.Google Scholar
Barnett, A. J. G. & Reid, R. L. (1956). J. Agric. Sci. 48, 315.Google Scholar
Barnett, A. J. G. & Reid, R. L. (1957 b). J. Agric. Sci. 49, 171.CrossRefGoogle Scholar
Burroughs, W., Gall, L. S., Gerlaugh, P. & Bethke, R. M. (1950). J. Anim. Sci. 9, 214.CrossRefGoogle Scholar
Crampton, E. W. & Maynard, L. A. (1938). J. Nutr. 15, 383.CrossRefGoogle Scholar
Duncan, R. E. B. & Porteous, J. W. (1953). Analyst, 78, 641.CrossRefGoogle Scholar
Elsden, S. R. (1946). J. Exp. Biol. 22, 51.CrossRefGoogle Scholar
El-Shazly, K. (1952 a). Biochem. J. 51, 640.CrossRefGoogle Scholar
El-Shazly, K. (1952 b). Biochem. J. 51, 647.CrossRefGoogle Scholar
Gray, F. V. & Pilgrim, A. P. (1952). Nature, Lond., 170, 375.CrossRefGoogle Scholar
Gutierrez, J. (1953). J. Bact. 66, 123.CrossRefGoogle Scholar
Heald, P. (1952). Brit. J. Nutr. 7, 124.CrossRefGoogle Scholar
Hungate, R. E. (1960). Bact. Rev. 14, 1.Google Scholar
Norman, A. G. & Jenkins, S. H. (1933). Biochem. J. 27, 818.CrossRefGoogle Scholar
Phillipson, A. T. (19471948). Nutr. Abstr. Rev. 17, 12.Google Scholar
Sijpesteyn, A. K. (1951). J. Gen. Microbiol. 5, 869.CrossRefGoogle Scholar
Sijpesteyn, A. K. & Elsden, S. R. (1952). Biochem. J. 52, 41.CrossRefGoogle Scholar
Todd, J. R. (1951). Nature, Lond., 168, 76.CrossRefGoogle Scholar