Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T09:59:31.737Z Has data issue: false hasContentIssue false

Studies on the production of volatile fatty acids from grass by rumen liquor in an artificial rumen: II. The volatile fatty acid production from dried grass

Published online by Cambridge University Press:  27 March 2009

A. John
Affiliation:
Division of Agricultural Biochemistry, Department of Biological Chemistry, University of Aberdeen
G. Barnett
Affiliation:
Division of Agricultural Biochemistry, Department of Biological Chemistry, University of Aberdeen
R. L. Reid
Affiliation:
Division of Agricultural Biochemistry, Department of Biological Chemistry, University of Aberdeen

Extract

1. A study has been made of the production of volatile fatty acids obtainable from dried grass and its gross water-soluble and water-insoluble separates, in the artificial rumen, over two growing seasons.

2. In contradistinction to fresh grass, the dried grass gives a consistent production of acetic acid proportionately greater than propionic acid, at all stages of maturity, but when aqueous extracts of the dried grass, and the resultant extracted grass, respectively, are examined separately in the artificial rumen, it is found that the former yield preponderating amounts of acetic acid while the latter give amounts of propionic acid equal to, or exceeding, the corresponding productions of acetic acid.

3. An examination of the titration curves for the total acids obtained from the dried grass, extracted grass and grass extract runs, indicates an approach to an incomplete relationship between the residual carbohydrate in the extracted grass and cellulose, while the grass extract reveals itself as the chief source of acetic acid in the whole dried grass, the acid being formed very speedily at the start of the run.

4. The suggested sources and some of the possible metabolic pathways involved in the formation of v.f.a. from grass are discussed in the text.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnett, A. J. G. (1954). Silage Fermentation. London: Butterworth's Scientific Publications.CrossRefGoogle Scholar
Barnett, A. J. G. & Duncan, R. E. B. (1953). Plant & Soil, 4, 370.CrossRefGoogle Scholar
Barnett, A. J. G. & Reid, R. L. (1956). J. Agric. Sci. (in the Press).Google Scholar
Bentley, O. G., Johnson, R. R., Hershberger, T. V., Cline, J. H. & Moxon, A. L. (1955). J. Nutr. 57, 389.CrossRefGoogle Scholar
Bryant, M. P. (1955). Personal communication.Google Scholar
Bryant, M. P. & Doetsch, R. N. (1954). Science, 129, 944.CrossRefGoogle Scholar
Burroughs, W., Frank, N. A., Gerlaugh, P. & Bethke, R. M. (1950). J. Nutr. 40, 9.CrossRefGoogle Scholar
Burroughs, W., Latona, A. de P., Gerlaugh, P. & Bethke, R. M. (1951). J. Anim. Sci. 10, 693.CrossRefGoogle Scholar
Cheng, E. W., Hall, G. & Burroughs, W. (1955). J. Dairy Sci. 38, 1225.CrossRefGoogle Scholar
Dubois, M., Gillies, K., Hamilton, J. K., Rebers, P. A. & Smith, F. (1951). Nature, London., 168, 167.CrossRefGoogle Scholar
Duncan, R. E. B. & Porteous, J. W. (1953). Analyst, 78, 641.CrossRefGoogle Scholar
Duncombe, W. G. & Glasscock, R. F. (1954). Biochem. J. 57, 11.Google Scholar
Elsden, S. R. (1946). J. Exp. Biol. 22, 51.CrossRefGoogle Scholar
Elsden, S. R., Hitchcock, M. W. S., Marshall, R. A. & Phillipson, A. T. (1946). J. Exp. Biol. 22, 191.CrossRefGoogle Scholar
El-Shazly, K. (1952). Biochem. J. 51, 647.CrossRefGoogle Scholar
Ferguson, W. (1948). Agric. Progr. 33, 129.Google Scholar
Gray, F. V., Pilgrim, A. F., Rodda, H. J. & Weller, R. A. (1952). J. Exp. Biol. 29, 57.CrossRefGoogle Scholar
Hungate, R. E. (1950). Bact. Rev. 14, 1.CrossRefGoogle Scholar
Johns, A. T. (1951). J. Gen. Microbiol., 5, 326, 337.CrossRefGoogle Scholar
Koch, R. B., Geddes, W. F. & Smith, F. (1951). Cereal Chem. 28, 5.Google Scholar
Macleod, R. A. & Brumwell, C. (1953). Res. Board Canada, Progr. Rep. Pacific Coast Sta. no. 96, p. 16.Google Scholar
Mann, S. O. & Oxford, A. E. (1954). J. Gen. Microbiol. 11, 83.CrossRefGoogle Scholar
Marston, H. R. (1948). Biochem. J. 42, 564.CrossRefGoogle Scholar
Otagaki, K. K., Black, A. L., Goss, H. & Kleiber, M. (1955). Agric. Fd Chem. 3, 948.CrossRefGoogle Scholar
Pfander, W. H. & Phillipson, A. T. (1953). J. Physiol. 122, 102.CrossRefGoogle Scholar
Phillipson, A. T. (1952). Brit. J. Nutr. 6, 190.CrossRefGoogle Scholar
Phillipson, A. T. (1953). Biochem. J. 54, iii.Google Scholar
Sijpesteyn, A. K. (1948). Thesis, University of Leyden.Google Scholar
Sijpesteyn, A. K. (1949). Leeuwenhoek ned. Tijdschr. 15, 49.Google Scholar
Sijpesteyn, A. K. (1951). J. Gen. Microbiol. 5, 869.CrossRefGoogle Scholar
Sijpesteyn, A. K. & Elsden, S. R. (1952). Biochem. J. 52, 41.CrossRefGoogle Scholar
Sirotnak, F. M., Doetsch, R. N., Robinson, R. Q. & Shaw, J. C. (1954). J. Dairy Sci. 37, 531.CrossRefGoogle Scholar
Somogyi, M. (1952). J. Biol. Chem. 195, 19.CrossRefGoogle Scholar
Swift, R. W., Cowan, R. L., Barron, G. P., Maddy, K. H. & Grose, E. C. (1951). J. Anim. Sci. 10, 434.CrossRefGoogle Scholar
Waite, R. & Boyd, J. (1953). J. Sci. Fd Agric. 4, 197.CrossRefGoogle Scholar
Wylam, C. B. (1953). J. Sci. Fd Agric. 4, 527.CrossRefGoogle Scholar