Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-20T18:34:27.430Z Has data issue: false hasContentIssue false

Soil adaptation of transgenic in vitro carrot plantlets

Published online by Cambridge University Press:  08 September 2008

H. MIKSCHOFSKY*
Affiliation:
Agricultural and Environmental Faculty, Agrobiotechnology, University of Rostock, Justus-von-Liebig-Weg 8, 18059, Germany
G. MANN
Affiliation:
Agricultural and Environmental Faculty, Agrobiotechnology, University of Rostock, Justus-von-Liebig-Weg 8, 18059, Germany
I. BROER
Affiliation:
Agricultural and Environmental Faculty, Agrobiotechnology, University of Rostock, Justus-von-Liebig-Weg 8, 18059, Germany
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Adapting in vitro transgenic carrots to soil is the most crucial step preceding the field investigation of transgenic carrots. A low proportion of plants, around 0·20, acclimatize to soil (Hardegger & Sturm 1998) and thus prohibit the generation of high-expression carrot lines. In the present paper, a protocol for an efficient soil transfer is presented and the impact of carrot cultivar, soil substrate, tissue culture, and transformation process on transfer process is analysed. Somatic embryo germinants of Daucus carota cv. Rote Riesen 2 and Lobbericher Gelbe Futtermoehre showed a tremendous survival proportion – up to 1·00 – when transferred to their optimal soil substrate: sandy and loamy soil, with low content of macro and micro elements and a pH of 5·8. By optimizing the conditions described here, the proportion of soil acclimatized transgenic carrot plants of D. carota Lobbericher Gelbe Futtermoehre was increased from 0·1 to 0·87, and for the cultivar Rote Riesen from 0·09 to 0·67.

Type
Crops and Soils
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baranski, R., Klocke, E. & Schumann, G. (2006). Green fluorescent protein as an efficient selection marker for Agrobacterium rhizogenes mediated carrot transformation. Plant Cell Reports 25, 190197.CrossRefGoogle ScholarPubMed
Campbell, M. A., Fitzgerald, H. A. & Ronald, P. C. (2002). Engineering pathogen resistance in crop plants. Transgenic Research 11, 599613.CrossRefGoogle ScholarPubMed
Chen, W. P. & Punja, Z. K. (2002). Transgenic herbicide- and disease-tolerant carrot (Daucus carota L.) plants obtained through Agrobacterium-mediated transformation. Plant Cell Reports 20, 929935.CrossRefGoogle Scholar
Droege, W., Broer, I. & Puehler, A. (1992). Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187, 142151.Google Scholar
Fromm, M., Taylor, L. P. & Walbot, V. (1985). Expression of genes transferred into monocot and dicot plant-cells by electroporation. Proceedings of the National Academy of Sciences of the United States of America 82, 58245828.CrossRefGoogle ScholarPubMed
Gilbert, M. O., Zhang, Y. Y. & Punja, Z. K. (1996). Introduction and expression of chitinase encoding genes in carrot following Agrobacterium-mediated transformation. In Vitro Cellular & Developmental Biology – Plant 32, 171178.CrossRefGoogle Scholar
Gilligan, C. A. (2008). Sustainable agriculture and plant diseases: an epidemiological perspective. Philosophical Transactions of the Royal Society B-Biological Sciences 363, 741759.CrossRefGoogle ScholarPubMed
Han, K. H. & Hwang, C. H. (2003). Salt tolerance enhanced by transformation of a P5CS gene in carrot. Journal of Plant Biotechnology 5, 157161.Google Scholar
Hardegger, M. & Sturm, A. (1998). Transformation and regeneration of carrot (Daucus carota L.). Molecular Breeding 4, 119127.CrossRefGoogle Scholar
Hausmann, L. & Töpfer, R. (1999). Development of plasmid vectors. Vorträge für Pflanzenzüchtung 45, 155172.Google Scholar
Imani, J., Berting, A., Nitsche, S., Schaefer, S., Gerlich, W. H. & Neumann, K. H. (2002). The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot cell suspension cultures and its expression in regenerated carrot plants. Plant Cell, Tissue and Organ Culture 71, 157164.CrossRefGoogle Scholar
Kaufmann, F. (1999). Möhre. In Handbuch des Pflanzenbaues Band 3: Knollen- und Wurzelfrüchte, Körner- und Futterleguminosen (Eds Keller, E. R., Hanus, H. & Heyland, K.-U.), pp. 507516. Stuttgart, Germany: Ulmer Publishers.Google Scholar
Lee, E. K., Cho, D. Y. & Soh, W. Y. (2001). Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Reports 20, 408415.CrossRefGoogle ScholarPubMed
Mikschofsky, H. (2006). Charakterisierung des Produktionssystem Pflanze für die rekombinante Impfstofferzeugung. Berlin: Logos Verlag.Google Scholar
Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473496.CrossRefGoogle Scholar
Park, E. J. & Chen, T. H. H. (2006). Improvement of cold tolerance in horticultural crops by genetic engineering. Journal of Crop Improvement 17, 69120.CrossRefGoogle Scholar
Pawlicki, N., Sangwan, R. S. & Sangwan-Norrell, B. S. (1992). Factors influencing the Agrobacterium tumefaciens mediated transformation of carrot (Daucus Carota L.). Plant Cell, Tissue and Organ Culture 31, 129139.CrossRefGoogle Scholar
Schirrmeier, H., Reimann, I., Kollner, B. & Granzow, H. (1999). Pathogenic, antigenic and molecular properties of rabbit haemorrhagic disease virus (RHDV) isolated from vaccinated rabbits: detection and characterization of antigenic variants. Archives of Virology 144, 719735.CrossRefGoogle ScholarPubMed
Soh, W. Y., Cho, D. Y. & Lee, E. K. (1996). Multicotyledonary structure of somatic embryos formed from cell cultures of Daucus carota L. Journal of Plant Biology 39, 7177.Google Scholar
Takaichi, M. & Oeda, K. (2000). Transgenic carrots with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci. Plant Science 153, 135144.CrossRefGoogle ScholarPubMed
Tepfer, D. (1984). Transformation of several species of higher plants by Agrobacterium Rhizogenes – sexual transmission of the transformed genotype and phenotype. Cell 37, 959967.CrossRefGoogle ScholarPubMed
Thomas, J. C., Guiltinan, M. J., Bustos, S., Thomas, T. & Nessler, C. (1989). Carrot (Daucus Carota) Hypocotyl Transformation Using Agrobacterium-Tumefaciens. Plant Cell Reports 8, 354357.CrossRefGoogle Scholar
Timbert, R., Barbotin, J.N. & Thomas, D. (1996). Enhancing carrot somatic embryos survival during slow dehydration, by encapsulation and control of dehydration. Plant Science 120, 215222.CrossRefGoogle Scholar
Tuba, Z. & Lichtenthaler, H.K. (2007). Long-term acclimation of plants to elevated CO2 and its interaction with stresses. Annals of the New York Academy of Sciences 1113, 135146.CrossRefGoogle ScholarPubMed
Van Sluys, M. A., Tempe, J. & Fedoroff, N. (1987). Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO Journal 6, 38813889.CrossRefGoogle ScholarPubMed