Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T17:59:53.188Z Has data issue: false hasContentIssue false

Simulating the effects of grassland management and grass ensiling on methane emission from lactating cows

Published online by Cambridge University Press:  07 December 2009

A. BANNINK*
Affiliation:
Department of Animal Production, Animal Sciences Group, Edelhertweg 15, 8219 PHLelystad, The Netherlands
M. C. J. SMITS
Affiliation:
Department of Animal Production, Animal Sciences Group, Edelhertweg 15, 8219 PHLelystad, The Netherlands
E. KEBREAB
Affiliation:
Department of Animal Science, University of California, DavisCA95616, USA
J. A. N. MILLS
Affiliation:
School of Agriculture, Policy and Development, University of Reading, Earley Gate, ReadingRG6 6AR, UK
J. L. ELLIS
Affiliation:
Centre for Nutrition Modelling, University of Guelph, Guelph, OntarioN1G 2W1, Canada
A. KLOP
Affiliation:
Department of Animal Production, Animal Sciences Group, Edelhertweg 15, 8219 PHLelystad, The Netherlands
J. FRANCE
Affiliation:
Centre for Nutrition Modelling, University of Guelph, Guelph, OntarioN1G 2W1, Canada
J. DIJKSTRA
Affiliation:
Animal Nutrition Group, Wageningen University, Marijkeweg 40, 6709 PGWageningen, The Netherlands
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

A dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH4) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH on the production of individual volatile fatty acids and CH4 as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed on CH4 emission, with a maximum difference (across all forage types and all levels of DMI) of 49 and 77% in g CH4/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0·1 and 0·4, respectively (values ranging from 10·2 to 19·5 g CH4/kg FCM). The lowest emission was established for early cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH4/kg FCM declined on average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0·1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0·4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH4 emission per kg FCM mainly as a result of a higher DMI and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with cows consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0·12 of the observed mean. Both observed and predicted emission expressed in g CH4/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH4 emission in cattle sheds on Dutch dairy farms and indicated that on average a fraction of 0·28 of the total emissions must have originated from manure under these circumstances.

Type
Modelling Animal Systems Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahamse, P. A., Dijkstra, J., Vlaeminck, B. & Tamminga, S. (2008). Frequent allocation of rotationally grazed dairy cows changes grazing behavior and improves productivity. Journal of Dairy Science 91, 20332045.CrossRefGoogle ScholarPubMed
Abrahamse, P. A., Tamminga, S. & Dijkstra, J. (2009). Effect of daily movement of dairy cattle to fresh grass in morning or afternoon on intake, grazing behaviour, rumen fermentation and milk production. Journal of Agricultural Science, Cambridge 147, 721730.CrossRefGoogle Scholar
Argyle, J. L. & Baldwin, R. L. (1988). Modeling of rumen water kinetics and effects of rumen pH changes. Journal of Dairy Science 71, 11781188.CrossRefGoogle ScholarPubMed
Bannink, A., De Visser, H., Klop, A., Dijkstra, J. & France, J. (1997 a). Causes of inaccurate prediction of volatile fatty acids by simulation models of rumen function in lactating cows. Journal of Theoretical Biology 189, 353366.CrossRefGoogle ScholarPubMed
Bannink, A., De Visser, H. & Van Vuuren, A. M. (1997 b). Comparison and evaluation of mechanistic rumen models. British Journal of Nutrition 78, 563581.CrossRefGoogle ScholarPubMed
Bannink, A., Dijkstra, J., Mills, J. A. N., Kebreab, E. & France, J. (2005). Nutritional strategies to reduce enteric methane formation in dairy cows. In Emissions from European Agriculture (Eds Kuczynski, T., Dämmgen, U., Webb, J. & Myczko, A.), pp. 367376. Wageningen, The Netherlands: Wageningen Academic Publishers.CrossRefGoogle Scholar
Bannink, A. & Tamminga, S. (2005). Rumen function. In Quantitative Aspects of Ruminant Digestion and Metabolism, 2nd edn (Eds Dijkstra, J., Forbes, J. M. & France, J.), pp. 263288. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Bannink, A., Kogut, J., Dijkstra, J., France, J., Kebreab, E., Van Vuuren, A. M. & Tamminga, S. (2006). Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. Journal of Theoretical Biology 238, 3651.CrossRefGoogle ScholarPubMed
Bannink, A., France, J., López, S., Gerrits, W. J. J., Kebreab, E., Tamminga, S. & Dijkstra, J. (2008). Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science and Technology 143, 3–26.CrossRefGoogle Scholar
Benchaar, C., Rivest, J., Pomar, C. & Chiquette, J. (1998). Prediction of methane production from dairy cows using existing mechanistic models and regression equations. Journal of Animal Science 76, 617627.CrossRefGoogle ScholarPubMed
Bibby, J. & Toutenburg, H. (1977). Prediction and Improved Estimation in Linear Models. Chichester, UK: John Wiley & Sons.Google Scholar
Bosch, M. W., Tamminga, S., Post, G., Leffering, C. P. & Muylaert, J. M. (1992). Influence of stage of maturity of grass silages on digestion processes in dairy cows. 1. Composition, nylon bag degradation rates, fermentation characteristics, digestibility and intake. Livestock Production Science 32, 245264.CrossRefGoogle Scholar
Bruinenberg, M. H., Van der Honing, Y., Agnew, R. E., Yan, T., van Vuuren, A. M. & Valk, H. (2002). Energy metabolism of dairy cows fed on grass. Livestock Production Science 75, 117128.CrossRefGoogle Scholar
CVB (2005). Veevoedertabel (in Dutch). Lelystad, The Netherlands: Centraal Veevoederbureau.Google Scholar
Dijkstra, J., Neal, H. D. St. C., Beever, D. E. & France, J. (1992). Simulation of nutrient digestion, absorption and outflow in the rumen: model description. Journal of Nutrition 122, 22392256.CrossRefGoogle ScholarPubMed
Dijkstra, J., Bannink, A., France, J. & Kebreab, E. (2007). Nutritional control to reduce environmental impacts of intensive dairy cattle systems. In Proceedings of the 7th International Symposium on the Nutrition of Herbivores. Herbivore Nutrition for the Development of Efficient, Safe and Sustainable Livestock Production (Eds Meng, Q. X., Ren, L. P. & Cao, Z. J.), pp. 411435. Beijing: China Agricultural University Press.Google Scholar
Ellis, J. L., Dijkstra, J., Kebreab, E., Bannink, A., Odongo, N. E., McBride, B. W. & France, J. (2008). Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. Journal of Agricultural Science, Cambridge 146, 213233.CrossRefGoogle Scholar
Ferris, C. P. (2007). Sustainable pasture-based dairy systems – meeting the challenges. Canadian Journal of Plant Sciences 87, 723738.CrossRefGoogle Scholar
Hensen, A., Groot, T. T., Van den Bulk, W. C. M., Vermeulen, A. T., Olesen, J. E. & Schelde, K. (2006). Dairy farm CH4 and N2O emissions, from one square metre to the full farm scale. Agriculture, Ecosystems and Environment 112, 146152.CrossRefGoogle Scholar
Hindrichsen, I. K., Wettstein, H.-R., Machmüller, A., Jörg, B. & Kreuzer, M. (2005). Effect of the carbohydrate composition of feed concentrates on methane emission from dairy cows and their slurry. Environmental Monitoring and Assessment 107, 329350.CrossRefGoogle ScholarPubMed
Holter, J. B. & Young, A. J. (1992). Methane prediction in dry and lactating Holstein cows. Journal of Dairy Science 75, 21652175.CrossRefGoogle ScholarPubMed
Hristov, A. N., Ropp, J. K., Grandeen, K. L., Abedi, S., Etter, R. P., Melgar, A. & Foley, A. E. (2005). Effect of carbohydrate source on ammonia utilization in lactating dairy cows. Journal of Animal Science 83, 408421.CrossRefGoogle ScholarPubMed
IPCC (Intergovernmental Panel on Climate Change) (1996). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual. Available online at http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html (verified 3 September 2009).Google Scholar
Kebreab, E., France, J., Mills, J. A. N., Allison, R. & Dijkstra, J. (2002). A dynamic model of N metabolism in the lactating dairy cow and an assessment of impact of N excretion on the environment. Journal of Animal Science 80, 248259.CrossRefGoogle Scholar
Kebreab, E., France, J., McBride, B. W., Odongo, N., Bannink, A., Mills, J. A. N. & Dijkstra, J. (2006). Evaluation of models to predict methane emissions from enteric fermentation in North American dairy cattle. In Nutrient Digestion and Utilization in Farm Animals: Modelling Approaches (Eds Kebreab, E., Dijkstra, J., Bannink, A., Gerrits, W. J. J. & France, J.), pp. 299313. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Kohn, R. A. & Boston, R. C. (2000). The role of thermodynamics in controlling rumen metabolism. In Modelling Nutrient Utilization in Farm Animals (Eds McNamara, J. P., France, J. & Beever, D. E.), pp. 1124. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Mills, J. A. N., France, J. & Dijkstra, J. (1999 a). A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model: 1. Dietary starch characterization and ruminal starch digestion. Journal of Animal Feed Sciences 8, 291340.CrossRefGoogle Scholar
Mills, J. A. N., France, J. & Dijkstra, J. (1999 b). A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model: 2. Postruminal starch digestion and small intestinal glucose. Journal of Animal Feed Sciences 8, 451481.CrossRefGoogle Scholar
Mills, J. A. N., Dijkstra, J., Bannink, A., Cammell, S. B., Kebreab, E. & France, J. (2001). A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation, and application. Journal of Animal Science 79, 15841597.CrossRefGoogle ScholarPubMed
Mills, J. A. N., Kebreab, E., Yates, C. M., Crompton, L. A., Cammell, S. B., Dhanoa, M. S., Agnew, R. E. & France, J. (2003). Alternative approaches to predicting methane emissions from dairy cows. Journal of Animal Science 81, 31413150.CrossRefGoogle ScholarPubMed
Moe, P. W. & Tyrrell, H. F. (1979). Methane production in dairy cows. Journal of Dairy Science 62, 15831586.CrossRefGoogle Scholar
Murphy, M. R., Baldwin, R. L. & Koong, L. J. (1982). Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. Journal of Animal Science 55, 411421.CrossRefGoogle ScholarPubMed
Neal, H. D. St. C., Dijkstra, J. & Gill, M. (1992). Simulation of nutrient digestion, absorption and outflow in the rumen: model evaluation. Journal of Nutrition 122, 22572272.CrossRefGoogle ScholarPubMed
Oenema, J., Koskamp, G. J. & Galama, P. J. (2001). Guiding commercial pilot farms to bridge the gap between experimental and commercial dairy farms; the project ‘Cows and Opportunities’. Netherlands Journal of Agricultural Science 49, 277296.Google Scholar
Olesen, J. E., Schelde, K., Weiske, A., Weisbjerg, M. R., Asman, W. A. H. & Djurhuus, J. (2006). Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agriculture, Ecosystems and Environment 112, 207220.CrossRefGoogle Scholar
Pedersen, S., Takai, H., Johnsen, J. O., Metz, J. H. M., Groot Koerkamp, P. W. G., Uenk, G. H., Phillips, V. R., Holden, M. R., Sneath, R. W., Short, J. L., White, R. P., Hartung, J., Seedorf, J., Schröder, M., Linkert, K. H. H. & Wathes, C. M. (1998). A comparison of three balance methods for calculating ventilation rates in livestock buildings. Journal of Agricultural Engineering Research 70, 2537.CrossRefGoogle Scholar
Reijs, J. (2007). Improving slurry by diet adjustments: a novelty to reduce N losses from grassland-based dairy farms. Ph.D. thesis, Wageningen University, Wageningen, The Netherlands.Google Scholar
Rinne, M., Huhtanen, P. & Jaakkola, S. (2002). Digestive processes of dairy cows fed silages harvested at four stages of grass maturity. Journal of Animal Science 80, 19861998.CrossRefGoogle ScholarPubMed
Schils, R. L. M., Verhagen, A., Aarts, H. F. M., Kuikman, P. J. & Šebek, L. B. J. (2006). Effect of improved nitrogen management on greenhouse gas emissions from intensive dairy systems in the Netherlands. Global Change Biology 12, 382391.CrossRefGoogle Scholar
Smits, M. C. J. & Huis in ‘t Veld, J. W. H. (2007). Ammonia emission from cow houses within the Dutch ‘Cows & Opportunities’ project. In Ammonia Emissions in Agriculture (Eds Monteny, G.-J. & Hartung, E.), pp. 119120. Wageningen, The Netherlands: Wageningen Academic Publishers.CrossRefGoogle Scholar
Tas, B. M., Taweel, H. Z., Smit, H. J., Elgersma, A., Dijkstra, J. & Tamminga, S. (2005). Effects of perennial ryegrass cultivars on intake, digestibility, and milk yield in dairy cows. Journal of Dairy Science 88, 32403248.CrossRefGoogle ScholarPubMed
Taweel, H. Z., Tas, B. M., Smit, H. J., Elgersma, A., Dijkstra, J. & Tamminga, S. (2005). Effects of feeding perennial ryegrass with an elevated concentration of water-soluble carbohydrates on intake, rumen function and performance of dairy cows. Animal Feed Science and Technology 121, 243256.CrossRefGoogle Scholar
Valk, H., Kappers, I. E. & Tamminga, S. (1996). In sacco degradation characteristics of organic matter, neutral detergent fibre and crude protein of fresh grass fertilized with different amounts of nitrogen. Animal Feed Science and Technology 63, 6387.CrossRefGoogle Scholar
Valk, H., Leusink-Kappers, I. E. & van Vuuren, A. M. (2000). Effect of reducing nitrogen fertilizer on grassland on grass intake, digestibility and milk production of dairy cows. Livestock Production Science 63, 2738.CrossRefGoogle Scholar
Van Es, A. J. H. (1978). Feed evaluation for ruminants. 1. The systems in use from May 1977 onwards in the Netherlands. Livestock Production Science 5, 331345.CrossRefGoogle Scholar
Van Ouwerkerk, E. N. J. & Pedersen, S. (1994). Application of the carbon dioxide mass balance method to evaluate ventilation rates in livestock buildings. In Proceedings of the XII CIGR World Congress on Agricultural Engineering, Vol. 1, pp. 516529. Milan, Italy.Google Scholar
Van Straalen, W. M. (1995). Modelling of nitrogen flow and excretion in eairy cows. Ph.D. thesis, Wageningen Agricultural University, Wageningen, The Netherlands.Google Scholar
Van Vuuren, A. M., Krol-Kramer, F., Van der Lee, R. A. & Corbijn, H. (1992). Protein digestion and intestinal amino acids in dairy cows fed fresh Lolium perenne with different nitrogen contents. Journal of Dairy Science 75, 22152225.CrossRefGoogle ScholarPubMed
Yan, T., Agnew, R. E., Gordon, F. J. & Porter, M. G. (2000). Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livestock Production Science 64, 253263.CrossRefGoogle Scholar