Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T06:32:43.898Z Has data issue: false hasContentIssue false

Seed yield in caraway (Carum carvi). 1. Role of pollination

Published online by Cambridge University Press:  27 March 2009

H. J. Bouwmeester
Affiliation:
Research Institute for Agrobiology and Soil Fertility, Postbox 14, 6700 AA Wageningen, The Netherlands
H. G. Smid
Affiliation:
Research Institute for Agrobiology and Soil Fertility, Postbox 14, 6700 AA Wageningen, The Netherlands

Summary

Seed yields of caraway vary considerably between years, indicating that weather affects the yield-determining processes. Pollination could be one of these processes, because pollinator activity and efficiency are negatively affected by cold or wet weather. From 1990 to 1992 at the Research Institute for Agrobiology and Soil Fertility in Wageningen, The Netherlands, field and glasshouse experiments were performed to study the importance of pollination for caraway seed yields and the effects of some environmental factors. Preventing insect pollination by placing gauze cages in field plots reduced the yield of caraway by c. 15–20%, but under normal field conditions > 90% of hermaphrodite flowers were fertilized and additional hand-pollination did not improve yield. Removal of competing umbels enhanced the low seed set percentages in higher-order umbels, indicating that pollination did not limit seed yield in these umbels. Assays suggested that wind transfer, in addition to insects, plays a role in the pollination of caraway. It was concluded that assimilate availability and not pollination limits caraway seed yield.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ågren, J. (1989). Seed size and number in Rubus chamaemorus: between-habitat variation and effects of defoliation and supplemental pollination. Journal of Ecology 77, 10801092.CrossRefGoogle Scholar
D'Albore, G. C. R. (1986). Les insects pollinisateurs de quelques ombelliferes d'interêt agricole et condimentaire (Angelica archangelica L., Carum carvi L., Pelroselinum crispum A. W. Hill., Apium graveolens L., Pimpinella anisum L., Daucus carota L., Foeniculum vulgare Miller v. Azoricum Thell.). Apidologie 17, 107124.CrossRefGoogle Scholar
Bierzychudek, P. (1981). Pollinator limitation of plant reproductive effort. The American Naturalist 117, 838840.CrossRefGoogle Scholar
Bouwmeester, H. J., Smid, H. G. & Loman, E. (1995). Seed yield in caraway (Carum carvi). 2. Role of assimilate availability. Journal of Agricultural Science, Cambridge 124, 245251.CrossRefGoogle Scholar
Burgett, M. (1980). Pollination of parsley (Pelroselinum crispum) grown for seed. Journal of Apicultural Research 19, 7982.CrossRefGoogle Scholar
Centraal Bureau voor de Statistiek. Hoofdafdeling Landbouwstatistieken (19601991). Landbouwtellingen. Voorburg, The Netherlands: Centraal Bureau voor de Statistiek.Google Scholar
Embong, M. B., Hadziyev, D. & Molnar, S. (1977).Essential oils from spices grown in Alberta. Caraway oil (Carum carvi). Canadian Journal of Plant Science 57, 543549.CrossRefGoogle Scholar
Fenner, M. (1985). Seed Ecology. London: Chapman and Hall.CrossRefGoogle Scholar
Floot, H. W. G. (1988). Bestrijding van verbruining in karwij. In Proefveldverslag 1987 voor de klei-akkerbouw in Groningen en Friesland, pp. 6061. Lelystad, The Netherlands: Stichting Proefboerderijen Noordelijke Akkerbouw.Google Scholar
Genstat 5 Committee (1988). Genstat 5 Reference Manual. Oxford: Clarendon Press.Google Scholar
Hawthorn, L. R., Bohart, G. E., Toole, E. H., Nye, W. P. & Levin, M. D. (1960). Carrot seed production as affected by insect pollination. Bulletin 422, Agricultural Experiment Station Utah State University, United States Department of Agriculture.Google Scholar
Heindl, J. C. & Brun, W. A. (1983). Light and shade effects on abscission and 14C-photoassimilate partitioning among reproductive structures in soybean. Plant Physiology 73, 434439.CrossRefGoogle ScholarPubMed
Heitholt, J. J., Egli, D. B., Leggett, J. E. & MacKown, C. T. (1986). Role of assimilate and carbon-14 photosynthate partitioning in soybean reproductive abortion. Crop Science 26, 9991004.CrossRefGoogle Scholar
Koul, A. K., Hamal, I. A. & Gupta, S. K. (1989). Pollination mechanism in Coriandrum sativum Linn. (Apiaceae). Proceedings of the Indian Academy of Sciences, plant Sciences 99, 509515.CrossRefGoogle Scholar
Lovett Doust, J. (1980). Floral sex ratios in adromonoecious Umbelliferae. New Phytologist 85, 265273.CrossRefGoogle Scholar
Lovett Doust, J. & Harper, J. L. (1980). The resource costs of gender and maternal support in an andromonoecious umbellifer, Smyrnium olusatrum L. New Phytologist 85, 251264.CrossRefGoogle Scholar
McGregor, S. E. (1976). Insect pollination of cultivated crop plants. Agriculture Handbook No. 496. Washington: Agricultural Research Service, United States Department of Agriculture.Google Scholar
Mogford, D. J. (1974). Flower colour polymorphism in Cirsium paluslre. 2. Pollination. Heredity 33, 257263.CrossRefGoogle Scholar
Oosterhaven, K., Hartmans, K. J. & Huizing, H. J. (1993). Inhibition of potato (Solanum tuberosum) sprout growth by the monoterpene S-carvone: reduction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity without effect on its mRNA level. Journal of Plant Physiology 141, 463469.CrossRefGoogle Scholar
Peat, W. E. (1983). Developmental physiology. In The Faba Bean (Vicia faba L.): A Basis for Improvement (Ed. Hebblethwaite, P. D.), pp. 103132. London: Butterworths.Google Scholar
Putievsky, E. (1978). Yield components of annual Carum carvi L. growing in Israel. Acta Horticulturae 73, 283287.CrossRefGoogle Scholar
Sihag, R. C. (1986). Insect pollination increases seed production in cruciferous and umbelliferous crops. Journal of Apicultural Research 25, 121126.CrossRefGoogle Scholar
Stelleman, P. (1978). The possible role of insect visits in pollination of reputedly anemophilous plants, exemplified by Plantago lanceolata, and syrphid flies. In The Pollination of Flowers by Insects (Ed. Richards, A. J.), pp. 4146. Linnean Society Symposium Series 6. London: Academic Press.Google Scholar
Toxopeus, H. & Bouwmeester, H. J. (1993). Improvement of caraway essential oil and carvone production in The Netherlands. Industrial Crops and Products 1, 295301.CrossRefGoogle Scholar
Whelan, R. J. & Goldingay, R. L. (1989). Factors affecting fruit-set in Telopea speciosissima (Proteaceae): the importance of pollen limitation. Journal of Ecology 77, 11231134.CrossRefGoogle Scholar
Williams, I. H. (1984). The concentrations of air-borne rape pollen over a crop of oil-seed rape (Brassica napus L.). Journal of Agricultural Science, Cambridge 103, 353357.CrossRefGoogle Scholar
Williams, I. H., Martin, A. P. & White, R. P. (1986). The pollination requirements of oil-seed rape (Brassica napus L.). Journal of Agricultural Science, Cambridge 106, 2730.CrossRefGoogle Scholar
Zulstra, K.. (1916). Über Carum carvi L. In Receuil des Travaux Botaniques Néerlandais Vol. 13 (3,4) (Eds Beyerinck, M. W., Heukels, H., Moll, J. W., Verschaffelt, E., de Vries, H. & Went, F. A. F. C.), pp. 159340. Groningen, The Netherlands: M. de Waal.Google Scholar