Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T14:47:31.106Z Has data issue: false hasContentIssue false

A respiration chamber for the study of energy utilization for maintenance and production in the laying hen

Published online by Cambridge University Press:  27 March 2009

J. J. Waring
Affiliation:
Department of Agricultural Chemistry, Queen's University, Belfast
W. O. Brown
Affiliation:
Department of Agricultural Chemistry, Queen's University, Belfast, and Ministry of Agriculture, Northern Ireland

Extract

1. Construction and details of operation of a respiration chamber suitable for studies on the laying hen are described.

2. Calorimetric data on the utilization of food energy from balanced rations and from glucose are given.

3. The net energy of balanced rations for maintenance and production is 83·7% of the metabolizable energy. The figure for glucose is considerably higher.

4. The maintenance requirement of the 2 kg. laying hen is 88·9 kcal. metabolizable energy/kg./day.

5. Some comments are given on the significance of protein metabolism in relation to the use of indirect calorimetry for avian species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural Research Council (1963). The Nutrient Requirements of Farm Livestock, no. 1: Poultry.Google Scholar
Barott, H. G., Fritz, J. C, Pringle, E. M. & Titus, H. W. (1938). J. Nutr. 15, 145.CrossRefGoogle Scholar
Benedict, F. G. (1938). Vital energetics. A study in comparative metabolism. Publ. Garneg. Instn no. 503, 48.Google Scholar
Bird, S. & Sinclair, J. W. (1939). Sci. Agric. 19, 542.Google Scholar
Blaxter, K. L. (1962). The Energy Metabolism of Ruminants, p. 277. London: Hutchinson.Google Scholar
Bolton, W. (1959). J. Agric. Sci. 52, 364.CrossRefGoogle Scholar
Brody, S. (1945). Bioenergetics and Growth, p. 310. Reinhold Publishing Corporation.Google Scholar
Brody, S., Funk, E. M. & Kempster, H. L. (1938). Res. Bull. Univ. Mo. Agric. Exp. Sta. 278, 5.Google Scholar
Byerly, T. C. (1941). Bull. Univ. Md Agric. Exp. Sta. no. A1.Google Scholar
Coulson, J. & Hughes, J. S. (1930). Poultry Sci. 10, 53.CrossRefGoogle Scholar
Deighton, T. & Hutchinson, J. C. D. (1940a). J. Agric. Sci. 30, 463.CrossRefGoogle Scholar
Deighton, T. & Hutchinson, J. C. D. (1940a). J. Agric. Sci. 30, 141.CrossRefGoogle Scholar
Dukes, H. H. (1937). J. Nutr. 14, 341.CrossRefGoogle Scholar
Fussell, M. H. (1960). Nature, Lond., 185, 332.CrossRefGoogle Scholar
Gerhartz, H. (1914). Pflüg. Arch. ges. Physiol. 156, 1.CrossRefGoogle Scholar
Hari, P. (1917). Biochem. Z. 78, 313.Google Scholar
Hawk, P. B., Oser, B. L. & Summerson, W. H. (1947). Practical Physiological Chemistry, p. 844 (12th ed.). London: Churchill.Google Scholar
Lusk, G. (1928). The Science of Nutrition, p. 64 (4th ed.). Saunders.Google Scholar
Mitchell, H. H. & Haines, W. T. (1927). J. Agric. Res. 34, 927.Google Scholar
Perek, M. & Sulman, F. (1945). Endocrinology, 36, 240.Google Scholar
Squance, E. & Brown, W. O. (1965). Brit. Poultry Sci. 6, 107.CrossRefGoogle Scholar
Titus, H. W. (1928). Poultry Sci. 8, 80.CrossRefGoogle Scholar
Winchester, C. F. (1940). Poultry Sci. 19, 239.CrossRefGoogle Scholar