Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T04:23:04.607Z Has data issue: false hasContentIssue false

Relationship between bacteria and ciliate protozoa in the rumen of sheep fed on a purified diet

Published online by Cambridge University Press:  27 March 2009

Y. Kurihara
Affiliation:
Biological Institute, Faculty of Science, Tohoku University, Sendai, Japan
T. Takechi
Affiliation:
Biological Institute, Faculty of Science, Tohoku University, Sendai, Japan
F. Shibata
Affiliation:
Biological Institute, Faculty of Science, Tohoku University, Sendai, Japan

Summary

Two sheep, with and without ciliate protozoa, were fed on a wood-pulp cellulose, corn starch, soya-bean protein diet and the microbiological and chemical characteristics of the rumen ingesta of both sheep were studied. The purified diet led to a simplified rumen flora enabling some deductions to be made about the interactions of the principal bacterial species and their interactions with the protozoa in relationship to the biochemical analysis of the rumen. Ammonia concentrations were similarly low in each animal. Total volatile fatty acid concentrations were higher in the faunated sheep though the proportion of propionic acid was highest in the unfaunated sheep. Cellulose digestion in the faunated rumen was about twice that in the unfaunated one. Total bacterial concentrations in the unfaunated rumen were over twice those in the faunated rumen, but the numbers of cellulolytic bacteria were higher in the latter while the numbers of amylolytic bacteria were higher in the unfaunated rumen. The principal species of bacteria differed in the two rumens.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou Akkada, A. R., Bartley, E. E., Berube, R., Fina, L. R., Meyer, R. M., Henricks, D. & Julius, F. (1968). Simple method to remove completely ciliate protozoa of adult ruminants. Applied Microbiology 16, 1475–77.CrossRefGoogle Scholar
Abou Akkada, A. R. & El-Shazly, (1964). Effect of absence of ciliate protozoa from the rumen on microbial activity and growth of lambs. Applied Microbiology 12, 384–90.CrossRefGoogle Scholar
Abou Akkada, A. R. & Howard, B. H. (1960). The biochemistry of rumen protozoa. III. The carbohydrate metabolism of Entodinium. Biochemical Journal 76, 445–51.CrossRefGoogle Scholar
Azuma, R., Ogimoto, K. & Suto, T. (1962). Anaerobic culture method with steel wool. Japanese Journal of Bacteriology 17, 802–6.Google ScholarPubMed
Blackburn, T. H. & Hungate, R. E. (1963). Succinic acid turnover and propionate production in the bovine rumen. Applied Microbiology 11, 132–5.CrossRefGoogle Scholar
Bryant, M. P. & Robinson, I. M. (1961). An improved non-selective culture medium for ruminal bacteria and its use in determining diurnal variation in numbers of bacteria in the rumen. Journal of Dairy Science 44, 1446–56.CrossRefGoogle Scholar
Bryant, M. P. & Small, N. (1956). The anaerobic monotrichous butyric acid-producing curved rodshaped bacteria of the rumen. Journal of Bacteriology 72, 1621.CrossRefGoogle ScholarPubMed
Bryant, M. P., Small, N., Bouma, C. & Chu, H. (1958 a). Bacteroides ruminicolan.sp. and Succinimonas amylolytica the new genus and species. Species of succinic acid-producing anaerobic bacteria of the bovine rumen. Journal of Bacteriology 76, 1523.CrossRefGoogle ScholarPubMed
Bryant, M. P., Small, N., Bouma, C. & Robinson, I. M. (1958 b). Characteristics of ruminal anaerobic cellulolytic cocci and Cillobacterium cellulosolvens n.sp. Journal of Bacteriology 76, 529–37.CrossRefGoogle Scholar
Christiansen, W. M. C., Kawashima, R. & Burroughs, W. (1965). Influence of protozoa upon rumen acid production and live weight gains in lambs. Journal of Animal Science 24, 730–4.CrossRefGoogle Scholar
Eadie, J. M. (1962). The development of rumen microbial populations in lambs and calves under various conditions of management. Journal of General Microbiology 29, 563–78.CrossRefGoogle Scholar
Eadie, J. M. & Gill, J. C. (1971). The effect of the absence of rumen ciliate protozoa on growing lambs fed on a roughage-concentrate diet. British Journal of Nutrition 26, 155–67.CrossRefGoogle ScholarPubMed
Eadie, J. M.Hyldgaard-Jensen, J., Mann, S. O., Reid, R. S. & Whitelaw, F. G. (1970). Observations on the microbiology and biochemistry of the rumen of cattle given different quantities of a pelleted barley ration. British Journal of Nutrition 24, 157–77.CrossRefGoogle ScholarPubMed
Van Gylswyk, N. O. & Labuschagne, J. P. L. (1971). Relative efficiency of pure cultures of different species of cellulolytic rumen bacteria in solubilizing cellulose in vitro. Journal of General Microbiology 66, 109–13.CrossRefGoogle ScholarPubMed
Hamlin, L. J. & Hungate, R. E. (1956). Culture and physiology of a starch-digesting bacterium (Bacteroides amylophilus n.sp.) from the bovine rumen. Journal of Bacteriology 72, 548–54.CrossRefGoogle ScholarPubMed
Hobson, P. N. & Mann, S. O. (1961). The isolation of glycerol-fermenting and lipolytic bacteria from the rumen of the sheep. Journal of General Microbiology 25, 227–40.CrossRefGoogle ScholarPubMed
Hungate, R. E. (1950). The anaerobic mesophilic cellulolytic bacteria. Bacteriological Reviews 14, 149.CrossRefGoogle ScholarPubMed
Hungate, R. E. (1957). Microorganisms in the rumen of cattle fed a constant ration. Canadian Journal of Microbiology 3, 289311.CrossRefGoogle ScholarPubMed
Hyden, S. (1956). A turbidimetric method for the determination of higher polyethylene glyools in biological materials. Kungliga Lantbrukshogskolans annaler 22, 139–45.Google Scholar
Jayasuriya, G. C. N. & Hungate, R. E. (1959). Lactate conversions in the bovine rumen. Archives of Biochemistry and Biophysics 82, 274–87.CrossRefGoogle ScholarPubMed
Klopfenstein, T. J., Purser, D. B. & Tyznic, W. J. (1966). Effect of defaunation on feed digestibility, rumen metabolism and blood metabolites. Journal of Animal Science 25, 765–73.CrossRefGoogle ScholarPubMed
Kurihara, Y., Eadie, J. M., Hobson, P. N. & Mann, S. O. (1968). Relationship between bacteria and ciliate protozoa in the sheep rumen. Journal of General Microbiology 51, 267–87.CrossRefGoogle ScholarPubMed
Lusk, J. W., Browning, C. B. & Miles, J. T. (1962). Small-sample in vivo cellulose digestion procedure for forage evaluation. Journal of Dairy Science 45, 6973.CrossRefGoogle Scholar
Luther, R., Trenkle, A. & Burroughs, W. (1966). Influence of rumen protozoa on volatile fatty acid production and ration digestibility in lambs. Journal of Animal Science 25, 1116–22.CrossRefGoogle Scholar
Males, J. R. & Purser, D. B. (1970). Relationship between rumen ammonia levels and the microbial population and volatile fatty acid proportions in faunated and defaunated sheep. Applied Microbiology 19, 485–90.CrossRefGoogle ScholarPubMed
McDougall, E. I. (1948). Studies on ruminant saliva. I. The composition and output of sheep's saliva. Biochemical Journal 43, 99109.CrossRefGoogle ScholarPubMed
Ogimoto, K. & Suto, T. (1963). Bacteria producing propionic acid in the rumen. I. Isolation of Veillonella alcalescens from the alimentary tract of ruminants and its decarboxylation of succinic acid. Japanese Journal of Zootechnical Science 34, 282–7.Google Scholar
Packett, L. V. & McCune, R. W. (1965). Determination of steam-volatile organic acids in fermentation media by gas-liquid chromatography. Applied Microbiology 13, 22–7.CrossRefGoogle ScholarPubMed
Rogosa, M. (1956). A selective medium for the isolation and enumeration of the Veillonella from the oral cavity. Journal of Bacteriology 72, 533–6.CrossRefGoogle ScholarPubMed
Shaedler, R. W., Dubos, R. & Costero, R. (1965). The development of the bacterial flora in the gastro intestinal tract of mice. Journal of Experimental Medicine 122, 5966.CrossRefGoogle Scholar
Sijpesteijn, A. K. (1951). On Ruminococcus flavefaciens, a cellulose-decomposing bacterium from the rumen of sheep and cattle. Journal of General Microbiology 5, 869–79.CrossRefGoogle ScholarPubMed
Suto, T., Minato, H., Ishibashi, S., Azuma, R. & Ogimoto, K. (1970). Gas chromatograph as an aid for differentation of strict anaerobes. Proceedings of 1st International Conference on Culture Collections, pp. 387–95, Tokyo: Tokyo University Press.Google Scholar
Smith, R. H. (1959). The development and function of rumen in milk-fed calves. Journal of Agricultural Science, Cambridge 52, 72–8.CrossRefGoogle Scholar
Tiwari, A. D., Bryant, M. P. & Wolfe, R. S. (1969). Simple method for isolation of Selenomonas ruminantium and some nutritional characteristics of the species. Journal of Dairy Science 52, 2054–6.CrossRefGoogle Scholar
Wesselman, H. J. (1960). Quantitative determination of ethanol in pharmaceutical products by gas chromatography. Journal of the American Pharmaceutical Association 49, 320–2.CrossRefGoogle ScholarPubMed
Whitelaw, F. G., Eadie, J. M., Mann, S. O. & Reid, R. S. (1972). Some effects of rumen ciliate protozoa in cattle given restricted amounts of a barley diet. British Journal of Nutrition 27, 425–37.CrossRefGoogle ScholarPubMed
Yoder, R. D., Trenkle, A. & Burroughs, W. (1966). Influence of rumen protozoa and bacteria upon cellulose digestion in vitro. Journal of Animal Science 25, 609–12.CrossRefGoogle ScholarPubMed