Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T10:29:52.208Z Has data issue: false hasContentIssue false

Predicting the metabolizable energy intake of ruminants using digestibility, ruminal methane production and fermentation data

Published online by Cambridge University Press:  21 November 2008

M. J. McPHEE*
Affiliation:
NSW Department of Primary Industries, Armidale, NSW 2351, Australia
R. S. HEGARTY
Affiliation:
NSW Department of Primary Industries, Armidale, NSW 2351, Australia
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Obtaining accurate estimates of the metabolizable energy (ME) intake (MEI; MJ/day) of individual grazing ruminants is an important requirement for effective nutritional management and genetic selection of energy efficient ruminants. Diet digestibility and the daily methane production rate (MPR; MJ/day) of ruminants can be closely linked with their MEI, so published data were examined to determine whether MEI could be accurately estimated from digestibility, MPR and other parameters able to be measured on grazing animals. Four modelling approaches were assessed or developed to estimate MEI: (i) a published fixed proportional relationship between the non-metabolizable losses of MPR and urinary energy (UE; MJ/day); (ii) the proportion of energy digestibility (EngDig); (iii) MPR and the ruminal factors that influence the stoichiometric relationships between MPR and MEI; and (iv) the calculated ME arising from rumen fermentation (MEf; MJ/day). Data to develop the models (n=61) were collected across three publications (Paper) where the Paper effect was treated as a random-effect variable. Each of the models (1–4) was challenged with an independent data set (n=19). The inclusion of MEf (P=0·01) to predict MEI [MEI=0·18 (2·03)+3·42 (0·36)×sqrt(MEf) (d.f.=57; residual log likelihood=173·6)] had the lowest mean square error of prediction (MSEP) when challenged with the independent data set; mean bias of −0·42 MJ/day (P<0·05), MSEP=0·68 MJ/day and the bias, slope and random components of the MSEP were, as a proportion, 0·26, 0·13 and 0·61, respectively. None of the models estimated MEI with sufficient accuracy to be useful for identifying individual animals with above average energetic efficiency. A critical limit to any model seeking to estimate MEI from MPR and fermentation traits appears to be the variation between animals and between diets, in the proportion of digested energy which is fermented relative to that which is made available by mammalian digestion, and this is evaluated.

Type
Modelling Animal Systems Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AFRC (1993). Energy and Protein Requirements of Ruminants. Wallingford, Oxfordshire, UK: CAB International.Google Scholar
Archer, J. A., Arthur, P. F., Herd, R. M., Parnell, P. F. & Pitchford, W. S. (1997). Optimum post-weaning test for measurement of growth rate, feed intake, and feed efficiency in British breed cattle. Animal Science 75, 20242032.CrossRefGoogle Scholar
Armstrong, D. G. (1964). Evaluation of artificially dried grass as a source of energy for sheep: No. II. Energy value of cocksfoot timothy and two strains of rye-grass at varying stages of maturity. Journal of Agricultural Science, Cambridge 62, 399415.CrossRefGoogle Scholar
Beauchemin, K. A., McClelland, L. A., Jones, S. D. & Kozub, G. C. (1995). Effects of crude protein content, protein degradability and energy concentration of the diet on growth and carcass characteristics of market lambs fed high concentrate diets. Canadian Journal of Animal Science 75, 387395.CrossRefGoogle Scholar
Beever, D. E., Coelho Da Silva, J. F., Prescott, J. H. & Armstrong, D. G. (1972). The effect in sheep of physical form and stage of growth on the sites of digestion of a dried grass. 1. Sites of digestion of organic matter, energy and carbohydrate. British Journal of Nutrition 28, 347371.CrossRefGoogle ScholarPubMed
Beever, D. E., Terry, R. A., Cammell, S. B. & Wallace, A. S. (1978). The digestion of spring and autumn harvested perennial ryegrass by sheep. Journal of Agricultural Science, Cambridge 90, 463470.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J., Ulyatt, M. J., Cammell, S. B. & Spooner, M. C. (1985). The digestion of fresh perennial ryegrass (Lolium perrenne L. cv. Melle) and white clover (Trifolium repens L. cv. Blanca) by growing cattle fed indoors. British Journal of Nutrition 54, 763775.CrossRefGoogle ScholarPubMed
Blaxter, K. L. & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition 19, 511522.CrossRefGoogle ScholarPubMed
Bristow, A. W., Whitehead, D. C. & Cockburn, J. E. (1992). Nitrogenous constituents in the urine of cattle, sheep and goats. Journal of the Science of Food and Agriculture 59, 387394.CrossRefGoogle Scholar
Carulla, J. E., Kreuzer, M., Machmüller, A. & Hess, H. D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian Journal of Agricultural Research 56, 961970.CrossRefGoogle Scholar
Coates, D. B. (2000). Faecal NIRS – what does it offer today's grazier? Tropical Grasslands 34, 230239.Google Scholar
Czerkawski, J. W. (1986). An Introduction to Rumen Studies. Oxford, UK: Pergamon Press.Google Scholar
Demeyer, D. I. & Degraeve, K. (1991). Differences in stoichiometry between rumen and hindgut fermentation. Journal of Physiology and Animal Nutrition 22, 5061.Google Scholar
Dove, H. & Mayes, R. W. (1991). The use of plant wax alkanes as marker substances in studies of the nutrition of herbivores: a review. Australian Journal of Agricultural Research 42, 913952.CrossRefGoogle Scholar
Goopy, J. P. & Hegarty, R. S. (2004). Repeatability of methane production of cattle fed concentrate and forage diets. Journal of Animal and Feed Sciences 13 (Suppl. 1), 7578.CrossRefGoogle Scholar
Grainger, C., Clark, T., McGinn, S., Auldlist, M. J., Beauchemin, K. A., Hannah, M. C., Waghorn, G. C., Clark, H. & Eckard, R. J. (2007). Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. Journal of Dairy Science 90, 27552766.CrossRefGoogle ScholarPubMed
Hegarty, R. S., Nolan, J. V. & Leng, R. A. (1994). The effects of protozoa and of supplementation with nitrogen and sulphur on digestion and microbial metabolism in the rumen of sheep. Australian Journal of Agricultural Research 45, 12151227.CrossRefGoogle Scholar
Hegarty, R. S., Neutze, S. A. & Oddy, H. (1999). Effects of protein and energy supply on the growth and carcass composition of lambs from differing nutritional histories. Journal of Agricultural Science, Cambridge 132, 361375.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Immig, I. (1996). The rumen and hindgut as source of ruminant methanogenesis. Environmental Monitoring and Assessment 42, 5772.CrossRefGoogle ScholarPubMed
Itabashi, H., Takeru, K. & Matsumoto, M. (1984). The effects of rumen ciliate protozoa on energy metabolism and some constituents in rumen fluid and blood plasma of goats. Japanese Journal of Zootechnical Science 55, 248255.Google Scholar
Jentsch, W., Schiemann, R., Hoffmann, L. & Wittenburg, H. (1972). Die energetische Verwertung der Grunfutterstoffe im frischen und getrockneten Zustand durch Wiederkauer. Archiv für Tierernährung 22, 1740.CrossRefGoogle Scholar
Johnson, D. E., Hill, T. M., Carmean, B. R., Branine, M. E., Lodman, D. W. & Ward, G. (1991). New perspectives on ruminant methane emissions. In Proceedings of the XII Symposium on Energy Metabolism of Farm Animals (Eds Wenk, C. & Boessinger, M.), pp. 376379. EEAP Publication No. 58.Google Scholar
Johnson, K. A., Huyler, M. T., Westberg, H. H., Lamb, B. K. & Zimmerman, P. (1994). Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environmental Science and Technology 28, 359362.CrossRefGoogle ScholarPubMed
Kirchgessner, M., Windisch, W. & Muller, H. L. (1995). Nutritional factors for the quantification of methane production. In Proceedings of the Eighth International Symposium on Ruminant Physiology (Eds von Engelhardt, W., Leonhard-Marek, S., Breves, G. & Giesecke, D.), pp. 333347. Stuttgart, Germany: Ferdinand Enke Verlag.Google Scholar
Kurihara, M., Shibata, M., Nishida, T., Purnomoadi, A. & Terada, F. (1997). Methane production and its dietary manipulation in ruminants. In Rumen Microbes and Digestive Physiology in Ruminants. Satellite Symposium of the 8th Animal Science Congress, Kyoto, October 1996 (Eds Itabashi, H., Onocera, R., Sasaki, Y., Ushida, K. & Yano, H.), pp. 199208. Basel, Switzerland: Karger.Google Scholar
Lee, G. J., Atkins, K. D. & Mortimer, S. I. (1995). Variation between Merino ewes in pasture intake 1. Between flock differences and some environmental sources of variation. Livestock Production Science 41, 133142.CrossRefGoogle Scholar
Lobley, G. E., Connell, A., Lomax, M. A., Brown, D. S., Milne, E., Calder, A. G. & Farningham, D. A. (1995). Hepatic detoxification of ammonia in the ovine liver: possible consequences for amino acid catabolism. British Journal of Nutrition 73, 667685.CrossRefGoogle ScholarPubMed
Machmüller, A. & Clark, H. (2006). First results of a meta-analysis of the methane emission data of New Zealand ruminants. International Congress Series 1293, 5457.CrossRefGoogle Scholar
Merchen, N. R., Elizalde, J. C. & Drackley, J. K. (1997). Current perspective on assessing site of digestion in ruminants. Animal Science 75, 22232234.CrossRefGoogle ScholarPubMed
Mills, J. A., Kebreab, E., Yates, C. M., Crompton, L. A., Cammell, S. B., Dhanoa, M. S., Agnew, R. E. & France, J. (2003). Alternative approaches to predicting methane emissions from dairy cows. Journal of Animal Science 81, 31413150.CrossRefGoogle ScholarPubMed
Murray, R. M., Bryant, A. M. & Leng, R. A. (1978). Methane production in the rumen and lower gut of sheep given lucerne chaff: effect of level of intake. British Journal of Nutrition 39, 337345.CrossRefGoogle ScholarPubMed
Mwenya, B., Santoso, B., Sar, C., Gamo, Y., Kobayashi, T., Arai, I. & Takahashi, J. (2004). Effects of including β1–4 galacto-oligosacharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Animal Feed Science and Technology 115, 313326.CrossRefGoogle Scholar
Nicholson, J. W. & Sutton, J. D. (1969). The effect of diet composition and level of feeding on digestion in the stomach and intestines of sheep. British Journal of Nutrition 23, 585601.CrossRefGoogle ScholarPubMed
Nolan, J. V. (1998). Stoichiometry of rumen fermentation and gas production. In Meeting the Kyoto Target: Implications for the Australian Livestock Industries (Eds Reyenga, P. J. & Howden, S. M.), pp. 2128. Canberra, ACT, Australia: Bureau of Rural Sciences.Google Scholar
Ørskov, E. R., Flatt, W. P. & Moe, P. W. (1968). Fermentation balance approach to estimate extent of fermentation and efficiency of volatile fatty acid formation in ruminants. Journal of Dairy Science 51, 14291435.CrossRefGoogle Scholar
Osakwe, I. I., Steingass, H. & Drochner, W. (2004). Effect of dried Elaeis guineense supplementation on nitrogen and energy partitioning of WAD sheep fed a basal hay diet. Animal Feed Science and Technology 117, 7583.CrossRefGoogle Scholar
Pelchen, A. & Peters, K. J. (1998). Methane emissions from sheep. Small Ruminant Research 27, 137150.CrossRefGoogle Scholar
Pinares-Patiño, C. S., Ulyatt, M. J., Lassey, K. R., Barry, T. N. & Holmes, C. W. (2003). Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed lucerne hay. Journal of Agricultural Science, Cambridge 140, 205214.CrossRefGoogle Scholar
Pinares-Patiño, C. S., D'Hour, P., Jouany, J.-P. & Martin, C. (2007). Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agriculture, Ecosystem and Environment 121, 3046.CrossRefGoogle Scholar
Standing Committee on Agriculture (SCA) (1990). Feeding Standards for Australian Livestock: Ruminants. Melbourne, VIC, Australia: CSIRO Publications.Google Scholar
Sheehan, W., Quirke, J. E. & Hanrahan, J. P. (1985). Sources of variation in the voluntary intake of hay and silage by 18-month-old wether sheep. Irish Journal of Agricultural Research 24, 171179.Google Scholar
St-Pierre, N. R. (2001). Invited review: integrating quantitative findings from multiple studies using mixed model methodology. Journal of Dairy Science 84, 741755.CrossRefGoogle ScholarPubMed
Stroup, W. W., Neilsen, M. K. & Gosey, J. A. (1987). Cyclic variation in cattle feed intake data: characterisation and implications for experimental design. Journal of Animal Science 64, 16381647.CrossRefGoogle ScholarPubMed
Tedeschi, L. O. (2006). Assessment of the adequacy of mathematical models. Agricultural Systems 89, 225247.CrossRefGoogle Scholar
Topps, J. H., Kay, R. N. B. & Goodall, E. D. (1968 a). Digestion of concentrate and of hay diets in the stomach and intestines of ruminants. 1. Sheep. British Journal of Nutrition 22, 261276.CrossRefGoogle Scholar
Topps, J. H., Kay, R. N. B., Goodall, E. D., Whitelaw, F. G. & Reid, R. S. (1968 b). Digestion of concentrate and of hay diets in the stomach and intestines of ruminants. 2. Young steers. British Journal of Nutrition 22, 281290.CrossRefGoogle ScholarPubMed
Ulyatt, M. J. & MacRae, J. C. (1971). The sites of digestion of fresh pasture species in the gastro-intestinal tracts of sheep. Proceedings of the New Zealand Society of Animal Production 31, 7481.Google Scholar
Ulyatt, M. J., Baker, S. K., McCrabb, G. J. & Lassey, K. R. (1999). Accuracy of SF6 tracer technology and alternatives for field measurements. Australian Journal of Agricultural Research 50, 13291334.CrossRefGoogle Scholar
Vlaming, J. B., Lopez-Villalobos, N., Brookes, I. M., Hoskin, S. O. & Clark, H. (2008). Within- and between-animal variance in methane emission from non-lactating dairy cows. Australian Journal of Experimental Agriculture 48, 124127.CrossRefGoogle Scholar
Wanderley, R. C., Theurer, B. & Poore, M. (1987). Duodenal bacterial and non bacterial protein supply in steers fed forage and grain diets. Animal Science 64, 295302.CrossRefGoogle Scholar
Wolin, E. A., Miller, T. L. & Stewart, C. S. (1997). Microbe: microbe interactions. In The Rumen Microbial Ecosystem, 2nd edn (Eds Hobson, P. N. & Stewart, C. S.), pp. 475491. London: Blackie Academic and Professional.Google Scholar
Wright, A. D. G., Kennedy, P., O'Neill, C. J., Toovey, A. F., Popovski, S., Rea, S. M., Pimm, C. L. & Klein, L. (2004). Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22, 39763985.CrossRefGoogle ScholarPubMed