Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T02:31:56.104Z Has data issue: false hasContentIssue false

Metabolizable protein and energy supply in lambs fed annual ryegrass (Lolium multiflorum Lam.) supplemented with sources of protein and energy

Published online by Cambridge University Press:  22 December 2010

G. A. AMARAL
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Campus Camobi, Santa Maria, 97105-900, RS, Brazil
G. V. KOZLOSKI*
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Campus Camobi, Santa Maria, 97105-900, RS, Brazil
A. B. SANTOS
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Campus Camobi, Santa Maria, 97105-900, RS, Brazil
D. S. CASTAGNINO
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Campus Camobi, Santa Maria, 97105-900, RS, Brazil
A. C. FLUCK
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Campus Camobi, Santa Maria, 97105-900, RS, Brazil
R. FARENZENA
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Campus Camobi, Santa Maria, 97105-900, RS, Brazil
T. P. ALVES
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Campus Camobi, Santa Maria, 97105-900, RS, Brazil
F. R. MESQUITA
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Campus Camobi, Santa Maria, 97105-900, RS, Brazil
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Ten Polwarth×Texel lambs (26±2·1 kg live weight (LW)), housed in metabolism cages and offered ryegrass (Lolium multiflorum) ad libitum, were used in a 5×5 Latin Square experiment to evaluate the effect of supplement type on digestion processes and on amino acid and energy supplies. Five of the 10 lambs were fitted with a rumen catheter and duodenal cannulae. Treatments included no supplement (control); 7 g/kg LW daily of cassava meal (Manihot esculenta, high-starch low-nitrogen (HS-LN)), cassava meal plus corn gluten meal (2:1, high-starch high-undegradable N (HS-UN)), cassava meal plus calcium caseinate (2·8:1, high-starch high-degradable N (HS-DN)) or corn gluten feed (low-starch high-degradable N (LS-DN)). Total intake of dry matter (DM), organic matter (OM) and N, as well as digestible OM intake were increased with HS-UN, HS-DN and LS-DN (P⩽0·050). Forage DM intake was reduced by HS-LN (P=0·030). Apparent digestibility of DM and OM was increased by HS-LN and HS-DN (P⩽0·038). Digestibility of neutral detergent fibre (NDF) and OM true digestibility were similar for all treatments. Supplementation with HS-LN decreased duodenal flux of total N, amino acid N, ammonia N and feed residual N (P⩽0·023). None of the supplements affected rumen microbial protein entering the small intestine, whereas the efficiency of rumen microbial protein synthesis (EMPS) was reduced by HS-LN and HS-DN (P⩽0·036). Ruminal degradability of dietary N (RDN) was increased by HS-LN, HS-DN and LS-DN (P⩽0·050). In conclusion, supplementing lambs fed ryegrass with degradable or undegradable high-protein concentrate increased the amino acid supply without affecting the supply of digestible energy, regardless of either the starch content or the degree of ruminal degradability of the protein source. These results indicate that supplementation of ryegrass-based diets should include both starch and protein sources.

Type
Animals
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AOAC (1997). Official Methods of Analysis. 16th edn. 3rd revision. Gaithersburg, MD: Association of Official Analytical Chemists, Inc.Google Scholar
Chen, X. B. & Gomes, M. J. (1992). Estimation of Microbial Protein Supply to Sheep and Cattle based on Urinary Excretion of Purine Derivatives – An Overview of the Technical Details. International Feed Resources Unit, Occasional Publication. Bucksburn Aberdeen, UK: Rowett Research Institute.Google Scholar
Clark, J. H., Klusmeier, T. H. & Cameron, M. R. (1992). Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. Journal of Dairy Science 75, 23042323.CrossRefGoogle Scholar
Farinatti, L. H. E., Da Rocha, M. G., Poli, C. H. E. C., Pires, C. C., Pötter, L. & Da Silva, J. H. S. (2006). Desempenho de ovinos recebendo suplementos ou mantidos exclusivamente em pastagem de azevém (Lolium multiflorum Lam.). Revista Brasileira de Zootecnia 35, 527534.CrossRefGoogle Scholar
Frizzo, A., Da Rocha, M. G., Restle, J., Montagner, D. P., De Freitas, F. K. & Dos Santos, DT. (2003). Suplementação energética na recria de bezerras de corte mantidas em pastagem de inverno. Revista Brasileira de Zootecnia 32, 643652.CrossRefGoogle Scholar
Gallardo, M., Cangiano, C. A., Gagliostro, G. A. & Gonda, H. L. (1991). Consumo en vacas lecheras en pastoreo. 1. Efecto de la suplementacion energetica sobre la tasa de sustitucion y la produccion de leche. Revista Argentina de Producción Animal 11, 381389.Google Scholar
Greenberg, NA. & Shipe, W. F. (1979). Comparison of the abilities of trichloroacetic, picric, sulfosalicyclic, and tungstic acids to precipitate protein hydrolysates and proteins. Journal of Food Science 44, 735737.CrossRefGoogle Scholar
Griffiths, J. D., Lyle, A. D., Marais, J. P. & Louw, B. P. (1999). The influence of stocking rate, growth implant, energy and ionophore supplementation on the performance of weaner wethers grazing irrigated Italian ryegrass (Lolium multiflorum). South African Journal of Animal Science 29, 7482.Google Scholar
Grings, E. E., Blümmel, M. & Südekum, K. H. (2005). Methodological considerations in using gas production techniques for estimating ruminal microbial efficiencies for silage-based diets. Animal Feed Science and Technology 123–124, 527545.Google Scholar
Illius, A. W. & Jessop, N. S. (1996). Metabolic constraints on voluntary intake in ruminants. Journal of Animal Science 74, 30523062.CrossRefGoogle ScholarPubMed
Klopfenstein, T. (1996). Need for escape protein by grazing cattle. Animal Feed Science and Technology 60, 191199.CrossRefGoogle Scholar
Kolver, E. S. (2003). Nutritional limitations to increased production on pasture-based systems. Proceedings of the Nutrition Society 62, 291300.CrossRefGoogle ScholarPubMed
Kozloski, G. V., Netto, D. P., Bonnecarrère Sanchez, L. M., Lima, L. D., Cadorin, R. L. Jr, Fiorentini, G. & Härter, C. J. (2006). Nutritional value of diets based on a low-quality grass hay supplemented or not with urea and levels of cassava meal. African Journal of Agricultural Research 1, 3846.Google Scholar
Kozloski, G. V., Reffatti, M. V., Bonnecarrère Sanchez, L. M., Lima, L. D., Cadorin, R. L. Jr, Härter, C. J. & Fiorentini, G. (2007). Intake and digestion by lambs fed a low-quality grass hay supplemented or not with urea, casein or cassava meal. Animal Feed Science and Technology 136, 191202.Google Scholar
Licitra, G., Hernandez, T. M. & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347358.Google Scholar
Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing beakers or crucibles: collaborative study. Journal of AOAC International 85, 12171240.Google Scholar
Palmer, D. W. & Peters, T. Jr (1969). Automated determination of free amino groups in serum and plasma using 2,4,6 trinitrobenzene sulfonate. Clinical Chemistry 15, 891901.CrossRefGoogle ScholarPubMed
Pilau, A., Da Rocha, M. G., Restle, J., Da Silva, J. H. S., De Freitas, F. K. & Macari, S. (2005). Desenvolvimento de novilhas de corte recebendo ou não suplementação energética em pastagem com diferentes disponibilidades de forragem. Revista Brasileira de Zootecnia 34, 14831492.CrossRefGoogle Scholar
Poppi, D. P. & McLennan, S. R. (1995). Protein and energy utilization by ruminants at pasture. Journal of Animal Science 73, 278290.CrossRefGoogle ScholarPubMed
Porter, P. & Singleton, A. G. (1971). The degradation of lignin and quantitative aspects of ruminant digestion. British Journal of Nutrition 25, 314.Google Scholar
Russell, J. B. (1998). Strategies that ruminal bacteria use to handle excess carbohydrate. Journal of Animal Science 76, 19551963.Google Scholar
Russell, J. B., O'Connor, J. D., Fox, D. G., Van Soest, P. J. & Sniffen, C. J. (1992). A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 70, 35513561.Google Scholar
SAS (2002). User's Guide: Statistics, Version 9. Cary, NC: SAS Institute, Inc.Google Scholar
Sayers, H. J., Mayne, C. S. & Bartram, C. G. (2003). The effect of level and type of supplement offered to grazing dairy cows on herbage intake, animal performance and rumen fermentation characteristics. Animal Science 76, 439454.Google Scholar
Senger, C. C. D., Kozloski, G. V., Bonnecarrère Sanchez, L. M., Mesquita, F. R., Alves, T. P. & Castagnino, D. S. (2008). Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Animal Feed Science and Technology 146, 169174.CrossRefGoogle Scholar
Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant, 2nd edn. New York, NY: Cornell University Press.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
De Villiers, J. F., Dugmore, T. J. & Wandrag, J. J. (2002). The value of supplementary feeding to pre-weaned and weaned lambs grazing Italian ryegrass. South African Journal of Animal Science 32, 3037.CrossRefGoogle Scholar
Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39, 971974.CrossRefGoogle Scholar