Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T05:42:29.177Z Has data issue: false hasContentIssue false

Legumes intercropped with spring barley contribute to increased biomass production and carry-over effects

Published online by Cambridge University Press:  13 December 2011

V. A. PAPPA*
Affiliation:
SAC, West Mains Road, Edinburgh, EH9 3JG, UK
R. M. REES
Affiliation:
SAC, West Mains Road, Edinburgh, EH9 3JG, UK
R. L. WALKER
Affiliation:
SAC, West Mains Road, Edinburgh, EH9 3JG, UK
J. A. BADDELEY
Affiliation:
SAC, West Mains Road, Edinburgh, EH9 3JG, UK
C. A. WATSON
Affiliation:
SAC, West Mains Road, Edinburgh, EH9 3JG, UK
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Intercropping systems that include legumes can provide symbiotically fixed nitrogen (N) and potentially increase yield through improved resource use efficiency. The aims of the present study were: (a) to evaluate the effects of different legumes (species and varieties) and barley on grain yield, dry matter production and N uptake of the intercrop treatments compared with the associated cereal sole crop; (b) to assess the effects on the yields of the next grain crop and (c) to determine the accumulation of N in shoots of the crops in a low-input rotation. An experiment was established near Edinburgh, UK, consisting of 12 hydrologically isolated plots. Treatments were a spring barley (Hordeum vulgare cvar Westminster) sole crop and intercrops of barley/white clover (Trifolium repens cvar Alice) and barley/pea (Pisum sativum cvar Zero4 or cvar Nitouche) in 2006. All the plots were sown with spring oats (Avena sativa cvar Firth) in 2007 and perennial ryegrass in 2008. No fertilizers, herbicides or pesticides were used at any stage of the experiment. Above-ground biomass (barley, clover, pea, oat and ryegrass) and grain yields (barley, pea and oat) were measured at key stages during the growing seasons of 2006, 2007 and 2008; land equivalent ratio (LER) was measured only in 2006. At harvest, the total above-ground biomass of barley intercropped with clover (4·56 t biomass/ha) and barley intercropped with pea cvar Zero4 (4·49 t biomass/ha) were significantly different from the barley sole crop (3·05 t biomass/ha; P<0·05). The grain yield of the barley (2006) intercropped with clover (3·36 t grain/ha) was significantly greater than that in the other treatments (P<0·01). The accumulation of N in barley was low in 2006, but significantly higher (P<0·05) in the oat grown the following year on the same plots. The present study demonstrates for the first time that intercrops can affect the grain yield and N uptake of the following crop (spring oats) in a rotation. Differences were also linked to the contrasting legume species and cultivars present in the previous year's intercrop. Legume choice is essential to optimize the plant productivity in intercropping designs. Cultivars chosen for intercropping purposes must take into account the effects upon the growth of the partner crop/s as well as to the following crop, including environmental factors.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, M. K., Hauggaard-Nielsen, H., Ambus, P. & Jensen, E. S. (2005). Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant and Soil 266, 273287.CrossRefGoogle Scholar
Anil, L., Park, J., Phipps, R. H. & Miller, F. A. (1998). Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference to the UK. Grass and Forage Science 53, 301317.CrossRefGoogle Scholar
Ball, B. C., Bingham, I., Rees, R. M., Watson, C. A. & Litterick, A. (2005). The role of crop rotations in determining soil structure and crop growth conditions. Canadian Journal of Soil Science 85, 557577.CrossRefGoogle Scholar
Balandreau, J. & Dommergues, Y. (1973). Assaying nitrogenase (C2H2) activity in the field. Bulletin of Ecological Research Communications (Stockholm) 17, 247254.Google Scholar
Bandyopadhyay, S. K. & De, R. (1986). Nitrogen relationships and residual effects of intercropping sorghum with legumes. The Journal of Agricultural Science, Cambridge 107, 629632.CrossRefGoogle Scholar
Bebawi, F. F. & Naylor, R. E. L. (1978). Yield performance of mixtures of oats and barley. New Phytologist 81, 705710.CrossRefGoogle Scholar
Bulson, H. A. J., Snaydon, R. W. & Stopes, C. E. (1997). Effects of plant density on intercropped wheat and field beans in an organic farming system. The Journal of Agricultural Science, Cambridge 128, 5971.CrossRefGoogle Scholar
Connolly, J., Wayne, P. & Bazzaz, F. A. (2001). Interspecific competition in plants: how well do current methods answer fundamental questions? The American Naturalist 157, 107125.CrossRefGoogle ScholarPubMed
Corre-Hellou, G., Brisson, N., Launay, M., Fustec, J. & Crozat, Y. (2007). Effect of root depth penetration on soil nitrogen competitive interactions and dry matter production in pea-barley intercrops given different soil nitrogen supplies. Field Crops Research 103, 7685.CrossRefGoogle Scholar
Cousin, R. (1997). Peas (Pisum sativum L.). Field Crops Research 53, 111130.CrossRefGoogle Scholar
Dariush, M., Ahad, M. & Meysam, O. (2006). Assessing the land equivalent ratio (LER) of two corn (Zea mays L.) varieties intercropping at various nitrogen levels in Karaj, Iran. Journal of Central European Agriculture 7, 359364.Google Scholar
Delogu, G., Cattivelli, L., Pecchioni, N., De Falcis, D., Maggiore, T. & Stanca, A. M. (1998). Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. European Journal of Agronomy 9, 1120.CrossRefGoogle Scholar
Dhima, K. V., Lithourgidis, A. S., Vasilakoglou, I. B. & Dordas, C. A. (2007). Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research 100, 249256.CrossRefGoogle Scholar
Eghball, B. & Maranville, J. W. (1993). Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stresses. Agronomy Journal 85, 147152.CrossRefGoogle Scholar
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636639.CrossRefGoogle Scholar
Fujita, K., Ofosu-Budu, K. G. & Ogata, S. (1992). Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant and Soil 141, 155175.CrossRefGoogle Scholar
Gastal, F. & Lemaire, G. (2002). N uptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany 53, 789799.CrossRefGoogle ScholarPubMed
Grashoff, C. & D'antuono, L. F. (1997). Effect of shading and nitrogen application on yield, grain size distribution and concentrations of nitrogen and water soluble carbohydrates in malting spring barley (Hordeum vulgare L.). European Journal of Agronomy 6, 275293.CrossRefGoogle Scholar
Greenwood, D. J., Lemaire, G., Gosse, G., Cruz, P., Draycott, A. & Neeteson, J. J. (1990). Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany 66, 425436.CrossRefGoogle Scholar
Hauggaard-Nielsen, H. & Jensen, E. S. (2001). Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Research 72, 185196.CrossRefGoogle Scholar
Hauggaard-Nielsen, H., Ambus, P. & Jensen, E. S. (2003). The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutrient Cycling in Agroecosystems 65, 289300.CrossRefGoogle Scholar
Hauggaard-Nielsen, H., Andersen, M. K., Jørnsgaard, B. & Jensen, E. S. (2006). Density and relative frequency effects on competitive interactions and resource use in pea-barley intercrops. Field Crops Research 95, 256267.CrossRefGoogle Scholar
Hauggaard-Nielsen, H., Gooding, M., Ambus, P., Corre-Hellou, G., Crozat, Y., Dahlmann, C., Dibet, A., Von Fragstein, P., Pristeri, A., Monti, M. & Jensen, E. S. (2009). Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research 113, 6471.CrossRefGoogle Scholar
Herrera, J. M., Stamp, P. & Liedgens, M. (2007). Dynamics of root development of spring wheat genotypes varying in nitrogen use efficiency. Developments in Plant Breeding 12, 197201.Google Scholar
HGCA (2005/06). The Barley Growth Guide. London: HGCA.Google Scholar
Jensen, E. S. (1996 a). Barley uptake of N deposited in the rhizosphere of associated field pea. Soil Biology and Biochemistry 28, 159168.CrossRefGoogle Scholar
Jensen, E. S. (1996 b). Rhizodeposition of N by pea and barley and its effect on soil N dynamics. Soil Biology and Biochemistry 28, 6571.CrossRefGoogle Scholar
Jones, L. & Clements, R. O. (1993). Development of a low input system for growing wheat (Triticum vulgare) in a permanent understory of white clover (Trifolium repens). Annals of Applied Biology 123, 109119.CrossRefGoogle Scholar
Justes, E., Mary, B., Meynard, J. M., Machet, J. M. & Thellier-Huché, L. (1994). Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany 74, 397407.CrossRefGoogle Scholar
Kaut, A. H. E. E., Mason, H. E., Navabi, A., O'donovan, J. T. & Spaner, D. (2009). Performance and stability of performance of spring wheat variety mixtures in organic and conventional management systems in western Canada. The Journal of Agricultural Science, Cambridge 147, 141153.CrossRefGoogle Scholar
Ledgard, S. F. & Steele, K. W. (1992). Biological nitrogen fixation in mixed legume/grass pastures. Plant & Soil 141, 137153.CrossRefGoogle Scholar
Martin, M. P. L. D. & Snaydon, R. W. (1982). Root and shoot interactions between barley and field beans when intercropped. The Journal of Applied Ecology 19, 263272.CrossRefGoogle Scholar
Mcbain, C. (2010). SAC Farm Management Handbook 2010/11. 31st edn. Penicuik, UK: SAC Rural Business Unit.Google Scholar
Mengel, K., Hütsch, B. & Kane, Y. (2006). Nitrogen fertilizer application rates on cereal crops according to available mineral and organic soil nitrogen. European Journal of Agronomy 24, 343348.CrossRefGoogle Scholar
Mytton, L. R., Cresswell, A. & Colbourn, P. (1993). Improvement in soil structure associated with white clover. Grass and Forage Science 48, 8490.CrossRefGoogle Scholar
Newman, S. M. (1986). A pear and vegetable interculture system: land equivalent ratio, light use efficiency and productivity. Experimental Agriculture 22, 383392.CrossRefGoogle Scholar
Ofori, F. & Stern, W. R. (1987). Cereal-legume intercropping systems. Advances in Agronomy 41, 4190.CrossRefGoogle Scholar
Papadopoulos, A., Mooney, S. J. & Bird, N. R. A. (2006). Quantification of the effects of contrasting crops in the development of soil structure: an organic conversion. Soil Use and Management 22, 172179.CrossRefGoogle Scholar
Pappa, V. A., Rees, R. M., Walker, R. L., Baddeley, J. A. & Watson, C. A. (2011). Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agriculture, Ecosystems and Environment 141, 153161.CrossRefGoogle Scholar
Perby, H. & Jensén, P. (1983). Varietal differences in uptake and utilization of nitrogen and other macro-elements in seedlings of barley, Hordeum vulgare . Physiologia Plantarum 58, 223230.CrossRefGoogle Scholar
Rao, M. R. & Willey, R. W. (1980). Evaluation of yield stability in intercropping: studies on sorghum/pigeonpea. Experimental Agriculture 16, 105116.CrossRefGoogle Scholar
Rees, R. M., Bingham, I. J., Baddeley, J. A. & Watson, C. A. (2005). The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 128, 130154.CrossRefGoogle Scholar
Szumigalski, A. R. & Van Acker, R. C. (2008). Land equivalent ratios, light interception, and water use in annual intercrops in the presence or absence of in-crop herbicides. Agronomy Journal 100, 11451154.CrossRefGoogle Scholar
Thorsted, M. D., Olesen, J. E. & Weiner, J. (2006). Width of clover strips and wheat rows influence grain yield in winter wheat/white clover intercropping. Field Crops Research 95, 280290.CrossRefGoogle Scholar
Tillman, B. A., Pan, W. L. & Ullrich, S. E. (1991). Nitrogen use by Northern-adapted barley genotypes under no-till. Agronomy Journal 83, 194201.CrossRefGoogle Scholar
Tilman, D., Fargione, J., Wolff, B., D'antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D. & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science 292, 281284.CrossRefGoogle ScholarPubMed
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature 418, 671677.CrossRefGoogle ScholarPubMed
Vandermeer, J. H. (1999). The Ecology of Intercropping. Cambridge, UK: Cambridge University Press.Google Scholar
Vinten, A. J. A., VIVIAN, B. J. & HOWARD, R. S. (1992). The Effect of Nitrogen Fertilizer on the Nitrogen Cycle of Two Upland Arable Soils of Contrasting Textures. Proceedings of the Fertilizer Society 329. Leek, UK: International Fertiliser Society. Google Scholar
Watson, C. A., Atkinson, D., Gosling, P., Jackson, L. R. & Rayns, F. W. (2002). Managing soil fertility in organic farming systems. Soil Use and Management 18 (Supplement S1 ), 239247.CrossRefGoogle Scholar
Webb, K. J., Jensen, E. F., Heywood, S., Morris, S. M., Linton, P. E. & Hooker, J. E. (2010). Gene expression and nitrogen loss in senescing root systems of red clover (Trifolium pratense). The Journal of Agricultural Science, Cambridge 148, 579591.CrossRefGoogle Scholar
Whitmore, A. P. & Schroder, J. J. (2007). Intercropping reduces nitrate leaching from under field crops without loss of yield: a modelling study. European Journal of Agronomy 27, 8188.CrossRefGoogle Scholar
Willey, R. W. (1979). Intercropping: its importance and research needs. Competition and yield advantages. Field Crop Abstracts 32, 110.Google Scholar
Willey, R. W. (1990). Resource use in intercropping systems. Agricultural Water Management 17, 215231.CrossRefGoogle Scholar
Xu, B. C., Li, F. M. & Shan, L. (2008). Switchgrass and milkvetch intercropping under 2:1 row-replacement in semiarid region, northwest China: aboveground biomass and water use efficiency. European Journal of Agronomy 28, 485492.CrossRefGoogle Scholar
Yildirim, E. & Guvenc, I. (2005). Intercropping based on cauliflower: more productive, profitable and highly sustainable. European Journal of Agronomy 22, 1118.CrossRefGoogle Scholar
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar
Zhang, L., Van Der Werf, W., Bastiaans, L., Zhang, S., LI, B. & Spiertz, J. H. J. (2008). Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research 107, 2942.CrossRefGoogle Scholar