Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T09:55:46.780Z Has data issue: false hasContentIssue false

Interaction of lipid supply and carbohydrates in the diet of sheep with digestibility and ruminal digestion

Published online by Cambridge University Press:  27 March 2009

Y. Elmeddah
Affiliation:
Laboratoire de la Lactation et de l'Elevage des Ruminants, Institut National de la Recherche Agronomique (INRA), Theix, 63122 Saint-Genès Champanelle, France
M. Doreau
Affiliation:
Laboratoire de la Lactation et de l'Elevage des Ruminants, Institut National de la Recherche Agronomique (INRA), Theix, 63122 Saint-Genès Champanelle, France
B. Michalet-Doreau
Affiliation:
Station de Recherches sur la Nutrition des Herbivores, INRA, Theix, 63122 Saint-Genès Champanelle, France

Summary

Two groups of nine wethers, three of which were fitted with rumen cannulas, were used in a digestion trial at the INRA centre in Theix, France, in 1988. Group 1 received 65% maize silage and 35% concentrates; group 2 received 65% hay and 35% concentrates. Concentrates were based on either cereals rich in starch, or by-products rich in fibre and were given either alone or supplemented with lipids as calcium soaps. The fatty acid content of lipid-supplemented diets was c. 9·5 and 8·5% of dry matter, of which 85 and 89% was provided by calcium soaps, for maize silage and hay diets, respectively. For each group, the four diets were tested in four successive periods from January to June 1988.

Total digestibility of dry and organic matter, acid detergent fibre (ADF) and neutral detergent fibre (NDF) was measured in six wethers of each group by total faeces collection. On cannulated wethers, volatile fatty acid content and composition, pH and NH3-N in rumen liquor were determined four times a day; in sacco degradability of dry matter, ADF and NDF of the forage eaten by the wethers was estimated by the kinetics of incubation in the rumen.

In vivo and in sacco results showed that dry matter and organic matter digestibilities were not modified by the nature of concentrates. Cell wall digestibility was higher for fibre concentrates than for starchy concentrates, by 4·1 and 6·2 percentage units for NDF in maize silage and hay groups, respectively. Volatile fatty acids (VFA) and ammonia concentrations were higher and pH was lower with the maize silage than with the hay diet.

Lipid supply slightly increased cell wall digestibility in the group fed maize silage by 7·5 and 2·0 percentage units for starch and fibre concentrates, respectively. This surprising increase was related to an improvement in in sacco degradability. In all diets, lipid supply increased pH, but variations in VFA concentration and pattern were low. Interactions between the nature of concentrate and lipid supply were moderate, but were higher in the group fed maize silage than in the group fed hay, especially for total digestibility.

Type
Animals
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauchart, D., Doreau, M. & Kindler, A. (1987). Effect of fat and lactose supplementation on digestion in dairy cows. II. Long chain fatty acids. Journal of Dairy Science 70, 7180.CrossRefGoogle Scholar
Ben Salem, H. (1989). Effets de l'addition de matières grasses sur la digestibilité et la digestion des glucides et de l'azote chez la vache laitière. Influence de la composition de la ration. MSc thesis, Instituto Agronómico Mediterraneo, Zaragoza, Spain.Google Scholar
Bines, J. A. & Napper, D. J. (1985). Effect of various forms of fat or fatty acids in the diet. Effect of calcium salts of fatty acids on cow performance and on digestibility of constituents of diets varying widely in fibre content. Report of the National Institute for Research in Dairying, University of Reading, p. 93.Google Scholar
Chalupa, W., Rickabaugh, B., Kronfeld, D. S. & Sklan, D. (1984). Rumen fermentation in vitro as influenced by long-chain fatty acids. Journal of Dairy Science 67, 14391444.CrossRefGoogle ScholarPubMed
Czerkawski, J. W. (1973). Effect of linseed oil fatty acids and linseed oil on rumen fermentation in sheep. Journal of Agricultural Science, Cambridge 81, 517531.CrossRefGoogle Scholar
Devendra, C. & Lewis, D. (1974). The interaction between dietary lipids and fibre in the sheep. 2. Digestibility studies. Animal Production 19, 6776.Google Scholar
Doreau, M., Bauchart, D. & Kindler, A. (1987). Effect of fat and lactose supplementation on digestion in dairy cows. I. Nonlipid components. Journal of Dairy Science 70, 6470.CrossRefGoogle ScholarPubMed
Doreau, M., Ferlay, A., Elmeddah, Y. & Bauchart, D. (1989). La ‘protection’ des matières grasses utilisées dans l'alimentation des ruminants: conséquences sur la digestion. Revue Française des Corps Gras 36, 271278.Google Scholar
El Hag, A. & Miller, T. B. (1972). Evaluation of whiskey distillery by-products. VI. The reduction in digestibility of malt distillers' grains by fatty acids and the interaction with calcium and other reversal agents. Journal of the Science of Food and Agriculture 23, 247258.CrossRefGoogle Scholar
Esplin, G., Hale, W. H., Hubbert, F. & Taylor, B. (1963). Effect of animal tallow and hydrolyzed vegetable and animal fat on ration utilization and rumen volatile fatty acid production with fattening steers. Journal of Animal Science 22, 695698.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Galbraith, H. & Miller, T. B. (1973). Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids. Journal of Applied Bacteriology 36, 635646.CrossRefGoogle ScholarPubMed
Galbraith, H., Miller, T. B., Paton, A. M. & Thomson, J. K. (1971). Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. Journal of Applied Bacteriology 34, 803813.CrossRefGoogle ScholarPubMed
Goering, H. K. & Van Soest, P. J. (1970). Forage Fibre Analyses. Handbook, Agricultural Research Service, United States Department of Agriculture, No. 379.Google Scholar
Grainger, R. B., White, T. W., Baker, F. H. & Stroud, J. W. (1957). The interrelationship between calcium and fat in ruminant digestion. Journal of Animal Science 16, 1086 (abstract).Google Scholar
Grummer, R. R. (1988). Influence of prilled fat and calcium salt of palm oil fatty acids on ruminal fermentation and nutrient digestibility. Journal of Dairy Science 71, 117123.CrossRefGoogle ScholarPubMed
Harfoot, C. G., Crouchman, M. L., Noble, R. C. & Moore, J. H. (1974). Competition between food particles and rumen bacteria in the uptake of long-chain fatty acids and triglycerides. Journal of Applied Bacteriology 37, 633641.CrossRefGoogle ScholarPubMed
Henderson, C.Stewart, C. S. & Hine, R. S. (1977). The effect of added tallow on the rumen digestion rate and microbial populations of sheep fed dried grass. Proceedings of the Nutrition Society 36, 148A.Google ScholarPubMed
Jenkins, T. C. & Palmquist, D. L. (1982). Effect of added fat and calcium on in vitro formation of insoluble fatty acids soaps and cell wall digestibility. Journal of Animal Science 55, 957963.CrossRefGoogle Scholar
Jenkins, T. C. & Palmquist, D. L. (1984). Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. Journal of Dairy Science 67, 978986.CrossRefGoogle ScholarPubMed
Johnson, R. R. & McClure, K. E. (1972). High fat rations for ruminants. I. The addition of saturated and unsaturated fats to high-roughage and high-concentrate rations. Journal of Animal Science 34, 501509.CrossRefGoogle ScholarPubMed
Jouany, J. P. (1982). Dosage des acides gras volatils et des alcools dans les contenus digestifs, les jus d'ensilage, les cultures bactériennes et les contenus de fermenteurs aérobies. Science des Aliments 2, 131144.Google Scholar
Kowalczyk, J., Ørskov, E. R., Robinson, J. J. & Stewart, C. S. (1977). Effect of fat supplementation on voluntary food intake and rumen metabolism in sheep. British Journal of Nutrition 37, 251257.CrossRefGoogle ScholarPubMed
Latham, M. J., Brooker, B. E., Pettipher, G. L. & Harris, P. J. (1978). Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass. Applied and Environmental Microbiology 35, 156165.CrossRefGoogle ScholarPubMed
Maczulak, A. E., Dehority, B. A. & Palmquist, D. L. (1981). Effects of long-chain fatty acids on growth of rumen bacteria. Applied and Environmental Microbiology 42, 856862.CrossRefGoogle ScholarPubMed
Michalet-Doreau, B., Vérité, R. & Chapoutout, P. (1987). Méthodologie de mesure de dégradabilité in sacco de l'azote des aliments dans le rumen. Bulletin Technique du CRZV, Theix, INRA 69, 57.Google Scholar
Mir, Z. (1988). A comparison of canola acidulated fatty acids and tallow as supplements to a ground alfalfa diet for sheep. Canadian Journal of Animal Science 68, 761767.CrossRefGoogle Scholar
Moller, P. D. (1988). The influence of high amounts of fat or Ca-soaps in rations to dairy cows on intestinal absorption of fatty acids and digestibility of structural carbohydrates. In Futterfette in der Tierernährung (Ed. Ziegelitz, R.), pp. 2339. Hamburg: Biolinol GmbH.Google Scholar
Olubobokun, J. A., Loerch, S. C. & Palmquist, D. L. (1985). Effect of tallow and tallow calcium soap on feed intake and nutrient digestibility in ruminants. Nutrition Reports International 31, 10751084.Google Scholar
Ørskov, E. R., Hine, R. S. & Grubb, D. A. (1978). The effect of urea on digestion and voluntary intake by sheep of diets supplemented with fat. Animal Production 27, 241245.Google Scholar
Palmquist, D. L. & Conrad, H. R. (1978). High fat rations for dairy cows. Effects on feed intake, milk and fat production and plasma metabolites. Journal of Dairy Science 61, 890901.CrossRefGoogle Scholar
Palmquist, D. L. & Conrad, H. R. (1980). High fat rations for dairy cows. Tallow and hydrolyzed blended fat at two intakes. Journal of Dairy Science 63, 391395.CrossRefGoogle ScholarPubMed
Palmquist, D. L. & Jenkins, T. C. (1980). Fat in lactation rations: A review. Journal of Dairy Science 63, 114.CrossRefGoogle Scholar
Palmquist, D. L., Jenkins, T. C. & Joyner, A. E. Jr (1986). Effect of dietary fat and calcium source on insoluble soap formation in the rumen. Journal of Dairy Science 69, 10201025.CrossRefGoogle ScholarPubMed
Perry, T. W. & Stewart, T. S. (1979). Effect of fat and lecithin and of moisture levels of corn and corn silage on nutrient digestibility by ruminants. Journal of Animal Science 48, 900905.CrossRefGoogle Scholar
Roger, V., Fonty, G., Komisarczuk, S. & Gouet, P. (1988). Effet de quelques facteurs physico-chimiques sur l'adhésion à la cellulose de deux espèces bactériennes cellulolytiques du rumen. Reproduction, Nutrition, Développement 28, Suppl. 1, 7778.CrossRefGoogle Scholar
Sklan, D. (1989). In vitro and in vivo rumen protection of proteins coated with calcium soaps of long chain fatty acids. Journal of Agricultural Science, Cambridge 112, 7983.CrossRefGoogle Scholar
Smith, R. H. (1975). Nitrogen metabolism in the rumen and the composition and nutritive value of nitrogen compounds entering the duodenum. In Digestion and Metabolism in the Ruminant (Eds McDonald, I. W. & Warner, A. C. I.), pp. 399447. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Sukhija, P. S. & Palmquist, D. L. (1990). Dissociation of calcium soaps of long-chain fatty acids in rumen fluid. Journal of Dairy Science 73, 17841787.CrossRefGoogle ScholarPubMed
Susmel, P., Stefanon, B., Piasentier, E. & Ovan, M. (1988). Effect of additives on rumen degradability of feed nitrogen. 2. Fats. Wissenschaftliche Zeitschrift der Wilhelm-Pieck Universität Rostock 37, 7576.Google Scholar
Sutton, J. D., Knight, R., McAllan, A. B. & Smith, R. H. (1983). Digestion and synthesis in the rumen of sheep given diets supplemented with free and protected oils. British Journal of Nutrition 49, 419432.CrossRefGoogle ScholarPubMed
Van der Honing, Y., Wieman, B. J., Steg, A. & Van Donselaar, B. (1981). The effect of fat supplementation of concentrates on digestion and utilization of energy by productive dairy cows. Netherlands Journal of Agricultural Science 29, 7992.CrossRefGoogle Scholar
Van Eenaeme, C., Bienfait, J. M., Lambot, O. & Pondant, A. (1969). Détermination automatique de l'ammoniaque dans le liquide du rumen par la méthode de Berthelot adaptée à l'auto-analyzer. Annales de Médecine Vétérinaire VII, 419429.Google Scholar
White, T. W., Grainger, R. B., Baker, F. H. & Stroud, J. W. (1958). Effect of supplemented fat on digestion and the ruminal calcium requirement of sheep. Journal of Animal Science 17, 797803.CrossRefGoogle Scholar