Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T16:57:34.059Z Has data issue: false hasContentIssue false

The influence of different daylengths on ear emergence and seed setting in oats

Published online by Cambridge University Press:  27 March 2009

D. J. Griffiths
Affiliation:
Welsh Plant Breeding Station, Aberystwyth

Extract

1. The study of the photoperiodic responses of varieties and forms of the genus Avena has revealed considerable diversity within the group.

2. The investigation of a number of forms differing in geographical distribution confirms the close relationship between photoperiodism and region of origin. There appears to exist a definite relationship between the geographic origin of a given form and the limits of its tolerance to short day. The forms from the more southerly latitudes suffered less from short day than those of northern origin.

3. Panicle exsertion was entirely suppressed under photoperiods of 12 hr. and less in A. sativa varieties Victory, S. 84 and Black Supreme, which have been selected for high yielding ability in more northerly latitudes.

4. Plants which failed to produce exserted panicles in varietal tests were dissected, and it was found that floral differentiation had not been inhibited by the shortened photoperiods, but that the full elongation of the internodes, especially the upper internodes, had been suppressed.

5. Selection experiments with progenies of the cross Wintok × A.fatna form Cc 3872 grown under different photoperiods confirmed a highly selective response to daylength, thus indicating that this response is under genetic control.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, J. (1924). Amer. J. Bot. 11, 535.CrossRefGoogle Scholar
Arthur, J. M., Guthrie, J. D. & Newell, J. M. (1930). Amer. J. Bot. 17, 416.CrossRefGoogle Scholar
Bell, G. D. H. (1936). J. Agric. Sci. 26, 155.CrossRefGoogle Scholar
Borthwick, H. A., Parker, M. W. & Heinze, P. H. (1941). Bot. Gaz. 103, 326.CrossRefGoogle Scholar
Cooper, J. P. (1951). J. Ecol. 39, 228.CrossRefGoogle Scholar
Cooper, J. P. (1952). J. Ecol. 40, 352.CrossRefGoogle Scholar
Cooper, J. P. (1954). J. Ecol. 42, 521.CrossRefGoogle Scholar
Cooper, J. P. (1956). J. Agric. Sci. 47, 262.CrossRefGoogle Scholar
Doroshenko, A. V. & Rasumov, V. I. (1929). Bull. Appl. Bot. Pl-Breed. 22, 219. (English summary, p. 274.)Google Scholar
Forster, H. C., Tincker, M. A. H., Vasey, A. J. & Wadham, S. M. (1932). Ann. Appl. Biol. 19, 378.Google Scholar
Garner, W. W. & Allard, H. A. (1920). J. Agric. Res. 18, 553.Google Scholar
Gott, M. B., Gregory, F. G. & Purvis, O. N. (1955). Ann. Bot., Lond. (N.S.) 19, 87.CrossRefGoogle Scholar
Gassner, G. (1918). Z. Bot. 10, 417.Google Scholar
Hamilton, Helen H. (1948). Amer. J. Bot. 35, 656.CrossRefGoogle Scholar
Hänsel, H. (1949). Bodenkultur, 3, 1.Google Scholar
Hayes, J. D. (1959). Unpublished.Google Scholar
Jenkin, T. J. (1922). Rep. Bot. (Soc.) Exch. Cl. Manchr, pp. 15.Google Scholar
Klebs, G. (1918). Festschrift zum Ernst Stahl. p. 128, Jena.Google Scholar
McKinney, H. H. & Sando, W. J. (1935). J. Agric. Res. 51, 621.Google Scholar
Philipson, W. R. (1934). New Phytol. 33, 359.CrossRefGoogle Scholar
Purvis, O. N. (1934). Ann. Bot., Lond., 48, 919.Google Scholar
Purvis, O. N. & Gregory, F. G. (1937). Ann. Bot., Lond. (N.S.), 1, 569.CrossRefGoogle Scholar
Tincker, M. A. H. (1925). Ann. Bot., Lond., 39, 721.CrossRefGoogle Scholar
Wanser, H. M. (1932). Science (N.S.), 56, 313.CrossRefGoogle Scholar
Wiggans, S. C. & Frey, K. J. (1955). Proc. Iowa Acad. Sci. 62, 125.Google Scholar