Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T16:02:49.888Z Has data issue: false hasContentIssue false

The indirect determination of energy retention in farm animals: I. The development of method

Published online by Cambridge University Press:  27 March 2009

K. L. Blaxter
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr
J. A. F. Rook
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr

Extract

1. Methods of estimating water retention in the body of cattle are discussed, and it is shown that methods based on determinations of the initial and final body-water content are of low accuracy and are not suitable for the indirect estimation of fat balance over a period of 24 days.

2. Analyses of tissues from young and adult cattle showed that with the exception of serum, brain, skin and bone, water content of the tissues may be predicted from the following equation:

Water(g./100g.) = 0·292 Na(mg./100g.) + 0·147 K(mg./100g.).

This equation shows that 1 m.equiv. of the Na of tissues is associated with more water than is 1 m.equiv. of the K.

3. No differences between cattle aged from less than 1 week to more than 5 years were observed in the relationship between water and Na and K content.

4. The equation applied also to the contents of the digestive tract, other than those of the abomasum which gave low results, ascribed to the presence of a high concentration of H+ ions.

5. Analyses of whole foetuses for Na, K and H2O showed that their water content could be predicted accurately. The same was true of amniotic fluid, but the water content of allantoic fluid was underestimated by 50%.

6. It was shown that despite the anomalous behaviour of brain, serum, skin and bone, accurate predictions of the water content of the animal could be made from simultaneous determinations of Na and K retentions, providing a correction was made for the storage of bound Na in bone.

7. Data are presented which indicate that the equations apply equally well to the tissues of the sheep.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abderhalden, E. (1908). Textbook of Physiological Chemistry. Translation by Hall, & Defren, , New York.Google Scholar
Baer, R. & Rössler, R. (1926). Arch. exp. Path. Pharmak. 119, 204.CrossRefGoogle Scholar
Barry, J. M. & Rowland, S. J. (1953). Biochem. J. 53, 213.CrossRefGoogle Scholar
Behnke, A. R. (19411942), Harvey Lect. 37, 198.Google Scholar
Behnke, A. R., Feen, B. G. & Welham, W. C. (1942). J. Amer. Med. Ass. 118, 495.CrossRefGoogle Scholar
Bergmann, G. (1921). Arch. Tierheilk. 47, 292.Google Scholar
Blaxter, K. L. & Graham, N. McC. (1955). J. Agric. Sci. 46, 292.CrossRefGoogle Scholar
Blaxter, K. L., Graham, N. McC. & Wainman, P. W. (1956). Brit. J. Nutr. 10, 69.CrossRefGoogle Scholar
Blaxter, K. L. & Rook, J. A. F. (1953). Nature, Lond., 171, 609.CrossRefGoogle Scholar
Blaxter, K. L. & Wood, W. A. (1951). Brit. J. Nutr. 5, 29.CrossRefGoogle Scholar
Brodie, B. B., Berger, E. Y., Axelrod, J., Dunning, M. F., Porosowska, Y. & Steele, J. M. (1951). Proc. Soc. Exp. Biol., N.Y., 77, 794.CrossRefGoogle Scholar
Brody, S. (1945). Bioenergetics and Growth. New York: Reinhold Pub. Co.Google Scholar
Danowski, T. S. (1944). J. Biol. Chem. 152, 207.CrossRefGoogle Scholar
Davey, D. G. (1936). J. Agric. Sci. 26, 328.CrossRefGoogle Scholar
Davies, R. E., Kornberg, H. L. & Wilson, G. M. (1952). Nature, Lond., 170, 979.CrossRefGoogle Scholar
Dukes, H. H. (1947). The Physiology of Domestic Animals, 6th ed.New York: Comstock Publishing Co., Inc., Ithaca.Google Scholar
Edelman, I. S., Olney, J. M., James, A. H., Brookes, L. & Moore, F. D. (1952). Science, 115, 447.CrossRefGoogle Scholar
Evans, J. V. & King, J. W. B. (1955). Nature, Lond., 176, 171.CrossRefGoogle Scholar
Gamble, J. L., Ross, G. S. & Tisdall, F. F. (1923). J. Biol. Chem. 57, 633.CrossRefGoogle Scholar
Gillioan, D. R. & Altschule, M. D. (1939). J. Clin. Invest. 18, 501.CrossRefGoogle Scholar
Golding, J. (1934). Analyst, 59, 468.CrossRefGoogle Scholar
Grouven, H. (1864). Physiologisch-chemische Futterungsversuche Agrikulturchemischen Versuchsstation zu Salzmünde, p. 207. Berlin.Google Scholar
Haecker, T. L. (1920). Bull. Minn. Agric. Exp. Sta. no. 193.Google Scholar
Hammond, J. (1927). The Physiology of Reproduction in the Cow. Cambridge University Press.Google Scholar
Harrison, H. E., Darrow, D. C. & Yannet, H. (1936). J. Biol. Chem. 113, 516.CrossRefGoogle Scholar
Hevesy, G. & Hofer, E. (1934). Nature, Lond., 134, 879.CrossRefGoogle Scholar
Kellner, O. (1912). Die Ernährung der landwirtschaftlichen Nutztiere, 6th ed.Berlin: Paul Parey.Google Scholar
Kohlrausch, W. (19291930). Arbeitsphysiologie, 2, 23.Google Scholar
Kramer, B. & Tisdall, F. F. (1921). J. Biol. Chem. 46, 339.CrossRefGoogle Scholar
Krayblll, H. F., Hankins, O. J. & Bitter, H. L. (1951). J. Appl. Physiol. 3, 681.CrossRefGoogle Scholar
London, I. M. & Rittenberg, D. (1950). J. Biol. Chem. 184, 687.CrossRefGoogle Scholar
McCance, R. A. & Widdowson, E. M. (1951). Proc. Roy. Soc. B, 138, 115.Google Scholar
Mitchell, H. H. & Hamilton, T. S. (1936). J. Agric. Res. 52, 837.Google Scholar
Nevens, W. B. (1928). J. Agric. Res. 36, 777.Google Scholar
Pace, N., Kline, L., Schachmann, H. K. & Harfenist, M. (1947). J. Biol. Chem. 168, 459.CrossRefGoogle Scholar
Painter, E. E. (1940). Amer. J. Physiol. 129, 744.CrossRefGoogle Scholar
Peters, J. P. & Van Slyke, D. D. (1932). Quantitative Clinical Chemistry, 2 (Methods), 1st ed.London: Baillière, Tindall and Cox.Google Scholar
Ritzman, E. G. & Benedict, F. G. (1938). Nutritional Physiology of the Adult Ruminant. Carnegie Institute, Washington, Publ. no. 494.Google Scholar
Shohl, A. T. (1939). Mineral Metabolism. New York: Reinhold Publ. Corp.Google Scholar
Soberman, R., Brodie, B. B., Levy, B. B., Axelrod, J., Hollander, V. & Steele, J. M. (1949). J. Biol. Chem. 179, 31.CrossRefGoogle Scholar
Weir, E. G. & Hastings, A. B. (1939). J. Biol. Chem. 129, 547.CrossRefGoogle Scholar