Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T10:02:30.233Z Has data issue: false hasContentIssue false

Impact of a tannin extract on digestibility, ruminal fermentation and duodenal flow of amino acids in steers fed maize silage and concentrate containing soybean meal or canola meal as protein source

Published online by Cambridge University Press:  24 March 2015

S. C. ÁVILA
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
G. V. KOZLOSKI*
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
T. ORLANDI
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
M. P. MEZZOMO
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
S. STEFANELLO
Affiliation:
Departamento de Zootecnia (Animal Science Department), Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Four Holstein steers (297 ± 56 kg of body weight (BW)) fitted with duodenal cannula and rumen catheter, were housed in metabolism cages and used in a 4 × 4 Latin Square trial to evaluate the effect of both protein source and Acacia mearnsii tannin extract on digestibility, ruminal fermentation, rumen microbial protein synthesis, N utilization and on duodenal flow of individual amino acids. The diet was offered at restricted amount of 25 g of dry matter (DM)/kg BW and consisted of maize silage plus concentrate, in a proportion of 0·7:0·3 (DM basis) respectively. Concentrate was formulated with either soybean meal or canola meal as protein source, with or without 50 g/kg of A. mearnsii tannin extract (i.e. 15 g/kg of total dietary DM). There was no effect of protein source on most variables. The apparent and true organic matter (OM) digestibilities, as well as neutral detergent fibre (NDF) digestibility were negatively affected by tannin extract inclusion without, however, affecting digestible OM intake. The amount of nitrogen (N) excreted in faeces increased whereas the urinary N excretion decreased in tannin extract treatments. No interaction time × treatment was detected for any rumen variable and no treatment effect was observed for rumen fluid pH and reducing sugars concentration. Rumen fluid concentration of ammonia N was lower for the canola meal plus tannin extract treatment. Rumen concentration of α-amino compounds was not affected by tannin extract but was higher when canola meal was the protein source. The duodenal flow of OM, total N, α-amino N and non-ammonia non-microbial N increased with tannin extract inclusion, whereas the duodenal flow of microbial N was not affected by treatment. For both protein sources, the amount of most individual amino acids flowing to the duodenum increased due to tannin extract addition. In conclusion, the dietary inclusion of 15 g/kg DM of tannin extract from A. mearnsii improved the amino acid supply independently of whether the protein source was canola meal or soybean meal, without affecting the amino acid profile, to steers fed maize silage plus concentrate, with a minor but significant impact on OM digestibility.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AOAC (1997). Official Methods of Analysis. 16th edn, 3rd revision. Gaithersburg, MD, USA: Association of Official Analytical Chemists, Inc.Google Scholar
Aufrère, J., Dudilieu, M. & Poncet, C. (2008). In vivo and in situ measurements of the digestive characteristics of sainfoin in comparison with lucerne fed to sheep as fresh forages at two growth stages and as hay. Animal 2, 13311339.CrossRefGoogle ScholarPubMed
Brito, A. F. & Broderick, G. A. (2007). Effects of different protein supplements on milk production and nutrient utilization in lactating dairy cows. Journal of Dairy Science 90, 18161827.CrossRefGoogle ScholarPubMed
Carulla, J. E., Kreuzer, M., Machmüller, A. & Hess, H. D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian Journal of Agricultural Research 56, 961970.CrossRefGoogle Scholar
Chen, X. B. & Gomes, M. J. (1992). Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives – An Overview of the Technical Details. Occasional Publication of the International Feed Resources Unit. Aberdeen, UK: Rowett Research Institute.Google Scholar
Driedger, A. & Hatfield, E. E. (1972). Influence of tannins on the nutritive value of soybean meal for ruminants. Journal of Animal Science 34, 465468.CrossRefGoogle ScholarPubMed
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350356.CrossRefGoogle Scholar
Frutos, P., Hervás, G., Giráldez, F. J. & Mantecón, A. R. (2004). Review. Tannins and ruminant nutrition. Spanish Journal of Agricultural Research 2, 191202.CrossRefGoogle Scholar
Grainger, C., Clarke, T., Auldist, M. J., Beauchemin, K. A., McGinn, S. M., Waghorn, G. C. & Eckard, R. J. (2009). Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian Journal of Animal Science 89, 241251.CrossRefGoogle Scholar
Greenberg, N. A. & Shipe, W. F. (1979). Comparison of the abilities of trichloroacetic, picric, sulfosalicylic, and tungstic acids to precipitate protein hydrolysates and proteins. Journal of Food Science 44, 735737.CrossRefGoogle Scholar
Griffiths, W. M., Clark, C. E. F., Clark, D. A. & Waghorn, G. C. (2013). Supplementing lactating dairy cows fed high-quality pasture with black wattle (Acacia mearnsii) tannin. Animal 7, 17891795.CrossRefGoogle ScholarPubMed
Hentz, F., Kozloski, G. V., Orlandi, T., Ávila, S. C., Castagnino, P. S., Stefanello, C. M. & Pacheco, G. F. E. (2012). Intake and digestion by wethers fed a tropical grass-based diet supplemented with increasing levels of canola meal. Livestock Science 147, 8995.CrossRefGoogle Scholar
Jayanegara, A., Leiber, F. & Kreuzer, M. (2012). Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition 96, 365375.CrossRefGoogle ScholarPubMed
Kozloski, G. V., Härter, C. J., Hentz, F., de Ávila, S. C., Orlandi, T. & Stefanello, C. M. (2012). Intake, digestibility and nutrients supply to wethers fed ryegrass and intraruminally infused with levels of Acacia mearnsii tannin extract. Small Ruminant Research 106, 125130.CrossRefGoogle Scholar
Kozloski, G. V., Stefanello, C. M., Mesquita, F. R., Alves, T. P., Ribeiro Filho, H. M. N., Almeida, J. G. R. & Moraes Genro, T. C. (2014). Technical note: evaluation of markers for estimating duodenal digesta flow and ruminal digestibility: acid detergent fiber, sulfuric acid detergent lignin, and n-alkanes. Journal of Dairy Science 97, 17301735.CrossRefGoogle ScholarPubMed
Lapierre, H., Lobley, G. E., Doepel, L., Raggio, G., Rulquin, H. & Lemosquet, S. (2012). Triennial Lactation Symposium: mammary metabolism of amino acids in dairy cows. Journal of Animal Science 90, 17081721.CrossRefGoogle ScholarPubMed
Licitra, G., Hernandez, T. M. & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347358.CrossRefGoogle Scholar
Makkar, H. P. S. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research 49, 241256.CrossRefGoogle Scholar
Makkar, H. P. S. & Becker, K. (1999). Purine quantification in digesta from ruminants by spectrophotometric and HPLC methods. British Journal of Nutrition 81, 107112.CrossRefGoogle ScholarPubMed
Marini, J. C., Fox, D. G. & Murphy, M. R. (2008). Nitrogen transactions along the gastrointestinal tract of cattle: a meta-analytical approach. Journal of Animal Science 86, 660679.CrossRefGoogle ScholarPubMed
Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing beakers or crucibles: a collaborative study. Journal of AOAC International 85, 12171240.Google ScholarPubMed
Misselbrook, T. H., Powell, J. M., Broderick, G. A. & Grabber, J. H. (2005). Dietary manipulation in dairy cattle: laboratory experiments to assess the influence on ammonia emissions. Journal of Dairy Science 88, 17651777.CrossRefGoogle ScholarPubMed
National Research Council (2001). Nutrient Requirements of Dairy Cattle. 7th revised edn, Washington, DC: National Academy Press.Google Scholar
Palmer, D. W. & Peters, T. Jr. (1969). Automated determination of free amino groups in serum and plasma using 2,4,6 trinitrobenzene sulfonate. Clinical Chemistry 15, 891901.CrossRefGoogle Scholar
Piepenbrink, M. S. & Schingoethe, D. J. (1998). Ruminal degradation, amino acid composition, and estimated intestinal digestibilities of four protein supplements. Journal of Dairy Science 81, 454461.CrossRefGoogle ScholarPubMed
Rossi, P. Jr., Sampaio, A. A. M. & Vieira, P. F. (2007). Disponibilidade e absorção de aminoácidos em bovinos alimentados com diferentes fontes de compostos nitrogenados. Revista Brasileira de Zootecnia 36, 960967.CrossRefGoogle Scholar
SAS Institute (2009). User's Guide: Statistics, Version 9.2. Cary, NC, USA: SAS Institute, Inc.Google Scholar
Senger, C. C. D., Kozloski, G. V., Sanchez, L. M. B., Mesquita, F. R., Alves, T. P. & Castagnino, D. S. (2008). Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Animal Feed Science and Technology 146, 169174.CrossRefGoogle Scholar
Theodoridou, K., Aufrère, J., Andueza, D., Pourrat, J., Le Morvan, A., Stringano, E., Mueller-Harvey, I. & Baumont, R. (2010). Effects of condensed tannins in fresh sainfoin (Onobrychis viciifolia) on in vivo and in situ digestion in sheep. Animal Feed Science and Technology 160, 2338.CrossRefGoogle Scholar
Valadares Filho, S. C., Machado, P. A. S., Chizzotti, M. L., Amaral, H. F., Magalhães, K. A., Rocha Júnior, V. R. & Capelle, E. R. (2010). Tabelas Brasileiras de Composição de Alimentos para Bovinos. CQBAL 3·0. 3.ed. Viçosa: Universidade Federal de Viçosa. Suprema Gráfica Ltda. Available online from: http://cqbal.agropecuaria.ws/webcqbal/en/index.php (accessed January 2015).Google Scholar
Van Thang, T., Sunagawa, K., Nagamine, I., Kishi, T. & Ogura, G. (2012). The main suppressing factors of dry forage intake in large-type goats. Asian-Australasian Journal of Animal Sciences 25, 341352.CrossRefGoogle ScholarPubMed
Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant, 2nd edn.New York, NY, USA: Cornell University Press.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Weatherburn, M. W. (1967). Phenol–hypochlorite reaction for determination of ammonia. Analytical Chemistry 39, 971974.CrossRefGoogle Scholar