Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T23:52:00.287Z Has data issue: false hasContentIssue false

Identification of chickpea cultivars by microsatellite markers

Published online by Cambridge University Press:  13 December 2010

P. CASTRO*
Affiliation:
Área de Mejora y Biotecnología, IFAPA, Centro ‘Alameda del Obispo’, Apdo. 3092, 14080 Córdoba, Spain
T. MILLÁN
Affiliation:
Dpto de Genética, Universidad de Córdoba, Campus de Rabanales Edificio C5 2a planta, 14071 Córdoba, Spain
J. GIL
Affiliation:
Dpto de Genética, Universidad de Córdoba, Campus de Rabanales Edificio C5 2a planta, 14071 Córdoba, Spain
J. MÉRIDA
Affiliation:
INIA, Centro de Sevilla, Plaza de España Sector 3 E, 41013 Sevilla, Spain
M. L. GARCÍA
Affiliation:
INIA, Centro de Sevilla, Plaza de España Sector 3 E, 41013 Sevilla, Spain
J. RUBIO
Affiliation:
Área de Mejora y Biotecnología, IFAPA, Centro ‘Alameda del Obispo’, Apdo. 3092, 14080 Córdoba, Spain
M. D. FERNÁDEZ-ROMERO
Affiliation:
Dpto de Genética, Universidad de Córdoba, Campus de Rabanales Edificio C5 2a planta, 14071 Córdoba, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Characterization of plant varieties is traditionally based on phenotypic observation. However, some varieties have very similar morphological characteristics, which make it difficult to distinguish between them. The present study employed 15 microsatellite markers distributed across all linkage groups (LG) of the chickpea genetic map to characterize 32 commercial chickpea cultivars and determine the usefulness of these markers for cultivar identification. These markers showed a high level of polymorphism; a total of 154 different alleles were detected, with a mean of 10·3 alleles per locus. The polymorphic information content (PIC) value ranged from 0·455 to 0·897. All the markers, with the exception of TA130, TA135 and TA144, were considered to be informative (PIC>0·7), indicating their potential usefulness for cultivar identification. A subset of markers (TA186, TA200, TA106, TA113, TA117 and TA30) was sufficient to identify all the cultivars studied. In order to confirm their discriminatory power, 16 unreleased chickpea cultivars (V1–V16) were screened and all of them presented different patterns. Therefore, these microsatellites can be regarded as a reference set for chickpea cultivar identification and their profiles can be used as a DNA fingerprint for each registered cultivar, avoiding redundancy of identical cultivars as well as to protect breeders' rights.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlawat, I. P. S., Gangaiah, B. & Ashraf Zahid, M. (2007). Nutrient management in chickpea. In Chickpea Breeding and Management (Eds Yadav, S. S., Redden, R., Chen, W. & Sharma, B.), pp. 213232. Wallingford, UK: CABI.CrossRefGoogle Scholar
Bonow, S., Von Pinho, E. V. R., Vieira, M. G. C. & Vosman, B. (2009). Microsatellite markers in and around rice genes: applications in variety identification and DUS testing. Crop Science 49, 880886.CrossRefGoogle Scholar
Botstein, D., White, R. L., Skolnick, M. & Davis, R. (1980). Construction of genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics 32, 314331.Google Scholar
Choudhary, S., Sethy, N. K., Shokeen, B. & Bhatia, S. (2006). Development of sequence-tagged microsatellites site markers for chickpea (Cicer arietinum L.). Molecular Ecology Notes 6, 9395.CrossRefGoogle Scholar
Choudhary, S., Sethy, N. K., Shokeen, B. & Bhatia, S. (2009). Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theoretical and Applied Genetics 118, 591608.CrossRefGoogle ScholarPubMed
Choumane, W., Winter, P., Weigand, F. & Kahl, G. (2000). Conservation and variability of sequence-tagged microsatellite sites (STMSs) from chickpea (Cicer arietinum L.) within the genus Cicer. Theoretical and Applied Genetics 101, 269278.CrossRefGoogle Scholar
Chowdhury, M. A., Vandenberg, B. & Warkentin, T. (2002). Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 127, 317325.CrossRefGoogle Scholar
Giancola, S., Poltri, S. M., Lacaze, P. & Hopp, H. E. (2002). Feasibility of integration of molecular markers and morphological descriptors in a real case study of a plant variety protection system for soybean. Euphytica 127, 95113.CrossRefGoogle Scholar
Gil, J. & Cubero, J. I. (1993). Inheritance of seed coat thickness in chickpea (Cicer arietinum L.) and its evolutionary implications. Plant Breeding 111, 257260.CrossRefGoogle Scholar
Gunjaca, J., Buhinicek, I., Jukic, M., Sarcevic, H., Vragolovic, A., Kozic, Z., Jambrovic, A. & Pejic, I. (2008). Discriminating maize inbred lines using molecular and DUS data. Euphytica 161, 165172.CrossRefGoogle Scholar
Hüttel, B., Winter, P., Weising, K., Choumane, W., Weigand, F. & Kahl, G. (1999). Sequence-tagged microsatellite markers for chickpea (Cicer arietinum L.). Genome 42, 210217.CrossRefGoogle ScholarPubMed
Imtiaz, M., Materne, M., Hobson, K., van Ginkel, M. & Malhotra, R. S. (2008). Molecular genetic diversity and linked resistance to ascochyta blight in Australian chickpea breeding materials and their wild relatives. Australian Journal of Agricultural Research 59, 554560.CrossRefGoogle Scholar
Iruela, M., Rubio, J., Cubero, J. I., Gil, J. & Millán, T. (2002). Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theoretical and Applied Genetics 104, 643651.CrossRefGoogle ScholarPubMed
Jomová, K., Benková, M. & Kraic, J. (2009). Enrichment of chickpea genetic resources collection monitored by microsatellites. Czech Journal of Genetics and Plant Breeding 45, 1117.CrossRefGoogle Scholar
Kwon, Y. S., Lee, J. M., Yi, G. B., Yi, S. I., Kim, K. M., Soh, E. H., Bae, K. M., Park, E. K., Song, I. H. & Kim, B. D. (2005). Use of SSR markers to complement tests of distinctiveness, uniformity, and stability (DUS) of pepper (Capsicum annuum L.) varieties. Molecules and Cells 19, 428435.CrossRefGoogle ScholarPubMed
Lichtenzveig, J., Scheuring, C., Dodge, J., Abbo, S. & Zhang, H. B. (2005). Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theoretical and Applied Genetics 110, 492510.CrossRefGoogle ScholarPubMed
Millan, T., Winter, P., Jüngling, R., Gil, J., Rubio, J., Cho, S., Cobos, M. J., Iruela, M., Rajesh, P. N., Tekeoglu, M., Kahl, G. & Muehlbauer, F. J. (2010). A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175, 175189.CrossRefGoogle Scholar
Moreno, M. T., Cubero, J. I. (1978). Variation in Cicer arietinum L. Euphytica 27, 465485.CrossRefGoogle Scholar
Nguyen, T. T., Taylor, P. W., Redden, R. J. & Ford, R. (2004). Genetic diversity estimates in Cicer using AFLP analysis. Plant Breeding 123, 173179.CrossRefGoogle Scholar
Rohlf, F. J. (1998). NTSYS-pc Numerical Taxonomy and Multivariate Analysis System. Version 2.02. Setauket, New York: Exeter Publications.Google Scholar
Serret, M. D., Udupa, S. M. & Weigand, F. (1997). Assessment of genetic diversity of cultivated chickpea using microsatellite-derived RFLP markers: implications for origin. Plant Breeding 116, 573578.CrossRefGoogle Scholar
Sethy, N. K., Choudhary, S., Shokeen, B. & Bhatia, S. (2006 a). Identification of microsatellite markers from Cicer reticulatum: molecular variation and phylogenetic analysis. Theoretical and Applied Genetics 112, 347357.CrossRefGoogle ScholarPubMed
Sethy, N. K., Shokeen, B. & Bhatia, S. (2003). Isolation and characterization of sequence-tagged microsatellite sites markers in chickpea (Cicer arietinum L.). Molecular Ecology Notes 3, 428430.CrossRefGoogle Scholar
Sethy, N. K., Shokeen, B., Edwards, K. J. & Bhatia, S. (2006 b). Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theoretical and Applied Genetics 112, 14161428.CrossRefGoogle ScholarPubMed
Singh, A., Devarumath, R. M., Ramarao, S., Singh, V. P. & Raina, S. N. (2008). Assessment of genetic diversity, and phylogenetic relationships based on ribosomal DNArepeat unit length variation and Internal Transcribed Spacer (ITS) sequences in chickpea (Cicer arietinum) cultivars and its wild species. Genetic Resources and Crop Evolution 55, 6579.CrossRefGoogle Scholar
Tar'an, B., Warkentin, T. D., Tullu, A. & Vandenberg, A. (2007). Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50, 2634.CrossRefGoogle ScholarPubMed
Tessier, C., David, J., This, P., Boursiquot, J. M. & Charrier, A. (1999). Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theoretical and Applied Genetics 98, 171177.CrossRefGoogle Scholar
Udupa, S. M. & Baum, M. (2001). High mutation rate and mutational bias at (TAA)n microsatellite loci in chickpea (Cicer arietinum L.). Molecular Genetics and Genomics 265, 10971103.CrossRefGoogle ScholarPubMed
Udupa, S. M., Robertson, L. D., Weigand, F., Baum, M. & Kahl, G. (1999). Allelic variation at (TAA)n microsatellite loci in a world collection of chickpea (C. arietinum L.) germplasm. Molecular and General Genetics 261, 354363.CrossRefGoogle Scholar
Upadhyaya, H. D., Dwivedi, S. L., Baum, M., Varshney, R. K., Udupa, S. M., Gowda, C. L. L., Hoisington, D. & Singh, S. (2008). Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biology 8, 106. doi: 10.1186/1471-2229-8-106.CrossRefGoogle ScholarPubMed
UPOV (1991). Act of 1991. International Convention for the Protection of New Varieties of Plants of December 2, 1961, as Revised at Geneva on November 10, 1972, on October 23, 1978, and on March 19, 1991. Geneva, Switzerland: International Union for the Protection of New Varieties of Plants. Available online at: www.upov.int/en/publications/conventions/1991/pdf/act1991.pdf (verified 26 October 2010).Google Scholar
van Gastel, A. J. G., Bishaw, Z., Niane, A. A., Gregg, B. R. & Gan, Y. (2007) Chickpea seed production. In Chickpea Breeding and Management (Eds Yadav, S. S., Redden, R., Chen, W. & Sharma, B.), pp. 417444. Wallingford, UK: CABI.CrossRefGoogle Scholar
Winter, P., Pfaff, T., Udupa, S. M., Huttel, B., Sharma, P. C., Sahi, S., Arreguin-Espinoza, R., Weigand, F., Muehlbauer, F. J. & Kahl, G. (1999). Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Molecular and General Genetics 262, 90101.CrossRefGoogle ScholarPubMed
Yadav, S. S., Longnecker, N., Dusunceli, G., Bejiga, M., Yadav, M., Rizvi, A. H., Manohar, M., Reddy, A. A., Xaxiao, Z. & Chen, W. (2007). Uses, consumption and utilization. In Chickpea Breeding and Management (Eds Yadav, S. S., Redden, R., Chen, W. & Sharma, B.), pp. 72100. Wallingford, UK: CABI.CrossRefGoogle Scholar