Published online by Cambridge University Press: 27 March 2009
Animal production was compared on three pastures, Brachiaria mutica (para), B. decumbens (signal) and Panicum maximum cv. Hamil (hamil) each sown with a common legume mixture of Centrosemapubescens (centro), Macroptilium atropurpureum cv. Siratro, and Stylosanthes guianensis cv. Endeavour (stylo), at four stocking rates, 1·8, 21·87, 31·86, and 41·85 animals/ha, over 4 years on the GuadalcanalPlains, Solomon Islands.
Mean live-weight gain per head over the four stocking rates and 4 years on para pastures was 01·847, on signal pastures 01·838, and on hamil pastures 01·828 kg/head/day. Mean production per hectare at the optimum stocking rates were: para at 3.6 animals/ha, 607 kg; signal at 31·86 animals/ha, 442 kg; hamil at 21·87 animals/ha, 362 kg/ha/year.
The high stocking rates of 31·86 and 41·85 animals/ha caused the hamil pastures to decline to the stage where they were destocked in the 4th year of grazing.
Superior production on para pastures was not simply related to green dry matter (GDM) on offer. In the 1st year of grazing, GDM was highest in hamil pastures, but in the 2nd year highest in para, and in the 3rd year mean yields were similar in all pastures, but were very low at the 31·86 and 41·85 animals/ha stocking rate in the hamil pastures.
Para pastures maintained highest legume contents. The quadratic relationship between live-weight gain/head and legume content was significant over all pastures and stocking rates. Live-weight gain (LWG) per head increased up to 15% legume content, after which there was little change. Yield of green leaf, percentage green leaf, and sward bulk density did not appear to be related to LWG/head. Para pastures had lower values for all these components than the other pastures.
Chemical factors contributed to the higher animal production from para pastures. Para leaf maintained consistently higher in vitro dry-matter digestibility values. Na content of para averaged 01·812%, whereas other species were 01·801 to 01·802%, and below the critical level (01·805%) for animal intake. N and S in leaf material, and Cu in total tops were also consistently higher in para grass.
Results of this grazing trial suggest that selection of grass species on the basis of quality including dry-matter digestibility and mineral content, on ability to persist with increasing stocking rate, on compatibility with legumes, and on growth habit are more important than selection for dry-matter yield.