Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T09:45:35.184Z Has data issue: false hasContentIssue false

Germplasm diversity and differentiation of Helianthus tuberosus L. revealed by AFLP marker and phenotypic traits

Published online by Cambridge University Press:  01 August 2013

Y. X. KOU
Affiliation:
State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
J. ZENG
Affiliation:
State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
J. Q. LIU
Affiliation:
State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
C. M. ZHAO*
Affiliation:
State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Helianthus tuberosus L. is regarded as one of the most important bioenergy crops because of its tolerance to arid conditions and its high biomass production. Future breeding programmes will rely on the available germplasm, thus necessitating a critical assessment of genetic diversity and differentiation in the species. The germplasm diversity and regional differentiation of H. tuberosus L. was assessed for 60 accessions collected from East Asia and Europe by means of amplified fragment length polymorphisms (AFLPs), phenotypic traits and chemical analysis. The analysis did not reveal separate clusters for accessions from East Asia and Europe, with 5% for genetic and 0·27% for phenotypic variability, although some regional accessions were closely related to each other with respect to morphological, chemical and genetic variation. Both phenotypic and genetic relationships showed a moderate correlation with colour of tubers, which can be used as an important criterion for germplasm management of the crop. Three major genetic groups were identified from the accessions. Within the groups derived from the genetic data, both morphological and chemical traits were very variable. The most important features of Groups I, II and III were: Group I, strong sexual reproduction, higher above-ground biomass and nutrient content; Group II, longer vegetative growth; Group III, higher tuber yield and total sugar content. High diversity was found in both European and East Asian accessions as well as within each genetic group, suggesting that there is a strong base for future breeding from these plants.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annicchiarico, P., Royo, C., Bellah, F. & Moragues, M. (2009). Relationships among adaptation patterns, morphophysiological traits and molecular markers in durum wheat. Plant Breeding 128, 164171.CrossRefGoogle Scholar
Atlagić, J., Dozet, B. & Škorić, D. (1993). Meiosis and pollen viability in Helianthus tuberosus L. and its hybrids with cultivated sunflower. Plant Breeding 111, 318324.Google Scholar
Bartolelli, V., Mutinati, G. & Pisani, F. (1991). Microeconomic aspects of energy crops cultivation. In Biomass for Energy, Industry and Environment, 6th EC Conference, Athens (Eds Grassi, G., Collins, A. & Zibetta, H.), pp. 233237. Amsterdam, The Netherlands: Elsevier Applied Science.Google Scholar
Berndes, G., Hansson, J., Egeskog, A. & Johnsson, F. (2010). Strategies for 2nd generation biofuels in EU – Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness. Biomass and Bioenergy 34, 227236.Google Scholar
Cassells, A. C. & Walsh, M. (1995). Screening for Sclerotinia resistance in Helianthus tuberosus L. (Jerusalem artichoke) varieties, lines and somaclones, in the field and in vitro. Plant Pathology 44, 428437.Google Scholar
Chekroun, M. B., Amzile, J., el Yachioui, M., el Haloui, N. E. & Prevost, J. (1994). Qualitative and quantitative development of carbohydrate reserves during the biological cycle of Jerusalem artichoke (Helianthus tuberosus L.) tubers. New Zealand Journal of Crop and Horticultural Science 22, 3137.Google Scholar
De Mastro, G., Manolio, G. & Marzi, V. (2004). Jerusalem artichoke (Helianthus tuberosus L.) and Chicory (Cichorium intybus L.): potential crops for inulin production in the Mediterranean Area. Acta Horticulturae 629, 365374.Google Scholar
Diederichsen, A. (2010). Phenotypic diversity of Jerusalem artichoke (Helianthus tuberosus L.) germplasm preserved by the Canadian genebank. Helia 33, 116.Google Scholar
Doyle, J. J. & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 1115.Google Scholar
Encheva, J., Christov, M. & Ivanov, P. (2003). Characterization of interspecific hybrids between cultivated sunflower H. annuus L. (cv. Albena) and wild species Helianthus tuberosus. Helia 26, 4350.Google Scholar
Ferriol, M., Picó, M. B. & Nuez, F. (2003). Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution 50, 227238.Google Scholar
García, M. G., Ontivero, M., Diaz Ricci, J. C. & Castagnaro, A. (2002). Morphological traits and high resolution RAPD markers for the identification of the main strawberry varieties cultivated in Argentina. Plant Breeding 121, 7680.Google Scholar
Hay, R. M. K. & Offer, N. W. (1992). Helianthus tuberosus as an alternative forage crop for cool maritime regions: a preliminary study of the yield and nutritional quality of shoot tissues from perennial stands. Journal of the Science of Food and Agriculture 60, 213221.CrossRefGoogle Scholar
Heiser, C. B. (1978). Taxonomy of Helianthus and origin of domesticated sunflower. In Sunflower Science and Technology (Ed. Carter, J. F.), pp. 3153. Madison,WI: American Society of Agronomy.Google Scholar
Hill, J., Nelson, E., Tilman, D., Polasky, S. & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences USA 103, 1120611210.Google Scholar
Kays, S. J. & Kultur, F. (2005). Genetic variation in Jerusalem artichoke (Helianthus tuberosus L.) flowering date and duration. HortScience 40, 16751678.Google Scholar
Kays, S. J. & Nottingham, S. F. (2008). Biology and Chemistry of Jerusalem Artichoke (Helianthus tuberosus L.). Florida, Boca Raton: CRC Press, Taylor and Francis Group.Google Scholar
Kostoff, D. (1939). Autosyndesis and structural hybridity in F1-hybrid Helianthus tuberosus L. × Helianthus annuus L. and their sequences. Genetica 21, 285300.Google Scholar
Li, S. Z. & Catherine, C. H. (2009). Ethanol production in (the) People's Republic of China: potential and technologies. Applied Energy 86 (Supp 1), S162S169.Google Scholar
Li, X. F., Hou, S. L., Su, M., Yang, M. F., Shen, S. H., Jiang, G. M., Qi, D. M., Chen, S. Y. & Liu, G. S. (2010). Major energy plants and their potential for bioenergy development in China. Environmental Management 46, 579589.Google Scholar
Malmberg, A. & Theander, O. (1986). Differences in chemical composition of leaves and stem in Jerusalem artichoke and changes in low-molecular sugar and fructan content with time of harvest. Swedish Journal of Agricultural Research 16, 712.Google Scholar
Molis, C., Flourié, B., Ouarne, F., Gailing, M. F., Lartigue, S., Guibert, A., Bornet, F. & Galmiche, J. P. (1996). Digestion, excretion, and energy value of fructooligosaccharides in healthy humans. American Journal of Clinical Nutrition 64, 324328.Google Scholar
Muller, U. G. & Wolfenbarger, L. L. (1999). AFLP genotyping and fingerprinting. Trends in Ecology and Evolution 14, 389394.Google Scholar
Muñoz-Falcón, J. E., Prohens, J., Vilanova, S., Ribas, F., Castro, A. & Nuez, F. (2009). Distinguishing aprotected geographical indication vegetable (Almagro eggplant) from closely related varieties with selected morphological traits and molecular markers. Journal of the Science of Food and Agriculture 89, 320328.Google Scholar
Pas'ko, N. M. (1973). Basic morphological features for distinguishing varieties of Jerusalem artichoke. Trudy po Prikladnoy Botanike, Genetike i Selektsii 50, 91101.Google Scholar
Peakall, R. O. D. & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.Google Scholar
Perera, M. F., Arias, M. E., Costilla, D., Luque, A. C., García, M. B., Díaz Romero, C., Racedo, J., Ostengo, S., Filippone, M. P., Cuenya, M. I. & Castagnaro, A. P. (2012). Genetic diversity assessment and genotype identification in sugarcane based on DNA markers and morphological traits. Euphytica 185, 491510.Google Scholar
Puttha, R., Jogloy, S., Suriharn, B., Wangsomnuk, P. P., Kesmala, T. & Patanothai, A. (2013). Variations in morphological and agronomic traits among Jerusalem artichoke (Helianthus tuberosus L.) accessions. Genetic Resources and Crop Evolution 60, 731746.CrossRefGoogle Scholar
Rakhimov, D. A., Arifkhodzhaev, A. O., Mezhlumyan, L. G., Yuldashev, O. M., Rozikova, U. A., Aikhodzhaeva, N. & Vakil, M. M. (2003). Carbohydrate and proteins from Helianthus tuberosus. Chemistry of Natural Compounds 39, 312313.Google Scholar
Rashchenko, I. N. (1959). Biochemical investigations of the aerial parts of Jerusalem artichoke. Trudy Kazakh, Sel'skokhoz, Inst 6, 4052.Google Scholar
Rohlf, F. J. (2000). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. version 2.1. Setauket, New York: Exeter Publishing Ltd.Google Scholar
Schilling, E. E. & Heiser, C. B. (1981). Infrageneric classification of Helianthus (Compositae). Taxon 30, 393403.Google Scholar
Serieys, H., Souyris, I., Gil, A., Poinso, B. & Bervillé, A. (2010). Diversity of Jerusalem artichoke clones (Helianthus tuberosus L.) from the INRA-Montpellier collection. Genetic Resources and Crop Evolution 57, 12071215.Google Scholar
Slimestad, R., Seljaasen, R., Meijer, K. & Skar, S. L. (2010). Norwegian-grown Jerusalem artichoke (Helianthus tuberosus L.): morphology and content of sugars and fructo-oligosaccharides in stems and tubers. Journal of the Science of Food and Agriculture 90, 956964.CrossRefGoogle ScholarPubMed
Smeets, E. M. W., Faaij, A. P. C., Lewandowski, I. M. & Turkenburg, W. C. (2007). A bottom-up assessment and review of global bioenergy potentials to 2050. Progress in Energy and Combustion Science 33, 56106.CrossRefGoogle Scholar
Szambelan, K., Nowak, J. & Chrapkowska, K. J. (2004). Comparison of bacterial and yeast ethanol fermentation yield from Jerusalem artichoke (Helainthus tuberosus L.) tubers pulp and juices. ACTA Scientiarum Polonorum, Technologia Alimentaria 3, 4553.Google Scholar
Tar'an, B., Zhang, C., Warkentin, T., Tullu, A. & Vandenberg, A. (2005). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome 48, 257272.CrossRefGoogle ScholarPubMed
Tian, Y. S., Zhao, L. X., Meng, H. B., Sun, L. Y. & Yan, J. Y. (2009). Estimation of un-used land potential for biofuels development in (the) People's Republic of China. Applied Energy 86 (Supp 1), S77S85.CrossRefGoogle Scholar
Van Damme, E. J. M., Barre, A., Mazard, A-M., Verhaert, P., Horman, A., Debray, H., Rouge, P. & Peumans, W. J. (1999). Characterization and molecular cloning of the lectin from Helianthus tuberosus. European Journal of Biochemistry 259, 135142.Google Scholar
Van Soest, L. J. M., Mastebroek, H. D. & De Meijer, E. P. M. (1992). Genetic resources and breeding: a necessity for the success of industrial crops. Industrial Crops and Products 1, 283288.Google Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van De Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. & Zabeau, M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.Google Scholar
Wangsomnuk, P. P., Khampa, S., Jogloy, S., Srivong, T., Patanothai, A. & Fu, Y. B. (2011 a). Assessing genetic structure and relatedness of Jerusalem artichoke (Helianthus tuberosus L.) germplasm with RAPD, ISSR and SRAP markers. American Journal of Plant Sciences 2, 753764.Google Scholar
Wangsomnuk, P. P., Khampa, S., Wangsomnuk, P, Jogloy, S., Mornkham, T., Ruttawat, B., Patanothai, A. & Fu, Y. B. (2011 b). Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers. Genetics and Molecular Research 10, 40124025.Google Scholar
Waycott, W. & Fort, S. B. (1994). Differentiation of nearly identical germplasm accessions by a combination of molecular and morphological analyses. Genome 37, 577583.Google Scholar
Yeh, F. C., Yang, R. C. & Boyle, T. (1999). POPGENE Version 1.31. Edmonton, Alberta, Canada: Molecular Biology and Biotechnology Centre, University of Alberta and Centre for International Forestry Research.Google Scholar
Zhuang, D. F., Jiang, D., Liu, L. & Huang, Y. H. (2011). Assessment of bioenergy potential on marginal land in China. Renewable and Sustainable Energy Reviews 15, 10501056.Google Scholar