Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T03:00:29.419Z Has data issue: false hasContentIssue false

Genetic base and relatedness of Indian early maturing potato (Solanum tuberosum) selections

Published online by Cambridge University Press:  05 October 2010

R. KUMAR*
Affiliation:
Crop Improvement Section, Central Potato Research Station, Post Bag No. 1, Model Town P.O., Jalandhar 144 003, India
G. S. KANG
Affiliation:
Crop Improvement Section, Central Potato Research Station, Post Bag No. 1, Model Town P.O., Jalandhar 144 003, India
S. K. PANDEY
Affiliation:
Central Potato Research Institute, Shimla 171 001, India
J. GOPAL
Affiliation:
Central Potato Research Institute, Shimla 171 001, India
*
*To whom all correspondence should be addressed. Email: [email protected]; [email protected]

Summary

Pedigree analysis was used to study the genetic background of 66 Indian early maturing potato selections, the pedigree of which was traced back to 35 ancestors. Six of the 35 contributed 0·42 of the genetic base, which shows the narrow genetic base of Indian early maturing genotypes. Genotypes 2814 (a)1 (f=0·145) and 3069 (d)4 (f=0·145) were the ancestors which appeared most frequently. Based on the coefficient of relationship, the 66 selections were grouped into seven groups with one common ancestor in almost all the selections within a group. The genotypes Kufri Ashoka, Kufri Pukhraj, AGB-69-1, Kufri Jyoti, Kufri Alankar, Kufri Lauvkar and Kufri Kuber were identified as very important parents/ancestors, carrying specific gene complexes valuable in new selections. Crosses between selections from different diversity groups can result in the selection of useful clones while increasing or maintaining genetic diversity, which is desirable to ensure sustainable breeding progress in the future.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alwala, S., Kimbeng, C. A., Gravois, K. A. & Bischoff, K. P. (2006). Trap a new tool for sugarcane breeding: comparison with AFLP and coefficient of parentage. Journal of the American Society of Sugar Cane Technologists 26, 6287.Google Scholar
Ariyarathna, C. & Gunasekare, K. (2006). Genetic base of tea (Camellia sinensis L.) cultivars in Sri Lanka as revealed by pedigree analysis. Journal of Applied Genetics 48, 125129.CrossRefGoogle Scholar
Becelaere, G. V., Lubbers, E. L., Paterson, A. H. & Chee, P. W. (2005). Pedigree vs DNA marker-based genetic similarity estimates in cotton. Crop Science 45, 22812287.CrossRefGoogle Scholar
Bornet, B., Goraguer, F., Joly, G. & Branchard, M. (2002). Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp. tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome 45, 481484.CrossRefGoogle ScholarPubMed
Bourke, A. (1991). Potato blight in Europe in 1845: the scientific controversy. In Phytophthora (Eds Lucas, J. A., Shattock, R. C., Shaw, D. S. & Cooke, L. R.), pp. 1224. Cambridge, UK: Cambridge University Press.Google Scholar
Braun, A. & Wenzel, G. (2004). Molecular analysis of genetic variation in potato (Solanum tuberosum L.). I. German cultivars and advanced clones. Potato Research 47, 8192.CrossRefGoogle Scholar
Chang, T. T. (1984). Conservation of rice genetic resources: luxury or necessity? Science 224, 251256.CrossRefGoogle ScholarPubMed
Chimote, V. P., Chakrabarti, S. K., Pattanayak, D. & Naik, P. S. (2004). Semi-automated simple sequence repeat analysis reveals narrow genetic base in Indian potato cultivars. Biological Plantarum 48, 517522.CrossRefGoogle Scholar
Cowen, N. M. & Frey, K. J. (1987). Relationship between genealogical distance and breeding behaviour in oats (Avena sativa L.). Euphytica 36, 413424.CrossRefGoogle Scholar
Cox, T. S., Kiang, Y. T., Gorman, M. B. & Rodgers, D. M. (1985). Relationship between coefficient of parentage and genetic similarity indices in the soybean. Crop Science 25, 529532.CrossRefGoogle Scholar
Cubillos, A. G. & Plaisted, R. L. (1976). Heterosis for yield in hybrids between Solanum tuberosum ssp tuberosum and tuberosum ssp andigena. American Potato Journal 53, 143150.CrossRefGoogle Scholar
Dilday, R. H. (1990). Contribution of ancestral lines in the development of new cultivars of rice. Crop Science 30, 905911.CrossRefGoogle Scholar
Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics, 4th edn.Essex, UK: Longman Group Ltd.Google Scholar
Fu, Y-B., Peterson, G. W., Richards, K. W., Tarn, T. R. & Percy, J. E. (2009). Genetic diversity of Canadian and exotic potato germplasm revealed by simple sequence repeat markers. American Journal of Potato Research 86, 3848.CrossRefGoogle Scholar
Glendinning, D. R. (1987). Gene pool of modern potato varieties. In The Production of New Potato Varieties: Technological Advances (Eds Jellis, G. J. & Richardson, D. E.), pp. 2830. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Gopal, J. & Gaur, P. C. (1997). Potato genetic resources in India. Indian Journal of Plant Genetics Resources 10, 205215.Google Scholar
Gopal, J., Chahal, G. S. & Minocha, J. L. (2000). Progeny mean, heterosis and heterobeltiosis in Solanum tuberosum×tuberosum and S. tuberosum×andigena families under a short day sub-tropic environment. Potato Research 43, 6170.CrossRefGoogle Scholar
Gopal, J. & Oyama, K. (2005). Genetic base of Indian potato selections as revealed by pedigree analysis. Euphytica 142, 2331.CrossRefGoogle Scholar
Hawkes, J. G. (1979). Genetic poverty of the potato in Europe. In Proceedings of Conference on Broadening Genetic Base of Crops 1978 (Eds Zeven, A. C. & van Harten, A. M.), pp. 1927. Wageningen, The Netherlands: Pudoc.Google Scholar
Hougas, R. W. (1956). Foreign potatoes, their introduction and importance. American Potato Journal 33, 190198.CrossRefGoogle Scholar
Kishore, H. (1974). The present status and approaches to the potato breeding in India. Journal of Indian Potato Association 1, 1118.Google Scholar
Kumar, R. & Kang, G. S. (2006). Usefulness of Andigena (Solanum tuberosum ssp andigena) genotypes as parents in breeding early bulking potato cultivars. Euphytica 150, 107115.CrossRefGoogle Scholar
Lefort-Buson, M., Dattée, Y. & Guillot-Lemoine, B. (1987). Heterosis and genetic distance in rapeseed (Brassica napus L.): use of kinship coefficient. Genome 29, 1118.CrossRefGoogle Scholar
Lin, M. S. (1991). Genetic base of Japonica rice varieties released in Taiwan. Euphytica 56, 4346.CrossRefGoogle Scholar
Loiselle, F., Tai, G. C. C. & Christie, B. R. (1991). Pedigree, agronomic and molecular divergence of parents in relation to progeny performance in potato. Potato Research 34, 305316.CrossRefGoogle Scholar
Malosetti, M., Van der Linden, C. G., Vosman, B. & Van Eeuwijk, F. A. (2007). A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175, 879889.CrossRefGoogle ScholarPubMed
Martin, J. M., Talbert, L. E., Lanning, S. P. & Blake, N. K. (1995). Hybrid performance in wheat as related to parental diversity. Crop Science 35, 104108.CrossRefGoogle Scholar
McGregor, C. E., Lambert, C. A., Greyling, M. M., Louw, J. H. & Warnich, L. (2000). A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113, 135144.CrossRefGoogle Scholar
Mendoza, H. A. & Haynes, F. L. (1974). Genetic relationship among potato cultivars grown in the United States. HortScience 9, 328330.CrossRefGoogle Scholar
Milbourne, D., Meyer, R., Bradshaw, J. E., Baird, E., Bonar, N., Provan, J., Powell, W. & Waugh, R. (1997). Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Molecular Breeding 3, 127136.CrossRefGoogle Scholar
Pal, B. P. & Pushkarnath, (1951). Indian potato varieties. ICAR Miscellaneous Bulletin 62, 63.Google Scholar
Plaisted, R. L. & Hoopes, R. W. (1989). The past record and future prospects for the use of exotic potato germplasm. American Journal of Potato Research 66, 603627.CrossRefGoogle Scholar
Ross, H. (1986). Potato Breeding: Problems and Perspectives. Advances in Plant Breeding 13. Berlin: Parey.Google Scholar
Russell, J. R., Ellis, R. P., Thomas, W. T. B., Waugh, R., Provan, J., Booth, A., Fuller, J., Lawrence, P., Young, G. & Powell, W. (2000). A retrospective analysis of spring barley germplasm development from ‘foundation genotypes’ to currently successful cultivars. Molecular Breeding 6, 553568.CrossRefGoogle Scholar
Schut, J. W., Qi, X. & Stam, P. (1997). Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theoretical and Applied Genetics 95, 11611168.CrossRefGoogle Scholar
Shivkumar, L., Subba Rao, V., Ram, T., Majumder, N. D., Padmavathi, G., Prasada Rao, U. & Krishnaiah, K. (1998). Genetic base and coefficient of relationship of rice (Oryza sativa) varieties released in Kerala. Indian Journal of Agricultural Sciences 68, 16.Google Scholar
Souza, E. & Sorells, M. E. (1991). Prediction of progeny variation in oat from parental genetic relationships. Theoretical and Applied Genetics 82, 233241.CrossRefGoogle ScholarPubMed
van Berloo, R., Hutten, R. C. B., Van Eck, H. J. & Visser, R. G. F. (2007). An online potato pedigree database resource. Potato Research 50, 4557.CrossRefGoogle Scholar