Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T05:47:23.473Z Has data issue: false hasContentIssue false

Genetic and environmental effects on weaning weight in crossbred beef cattle (Bos taurus × Bos indicus)

Published online by Cambridge University Press:  28 April 2021

P. Dominguez-Castaño*
Affiliation:
Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP14884-900, Brazil Facultad de Medicina Veterinaria, Fundación Universitaria Agraria de Colombia, BogotáD.C.111166, Colombia
A. M. Maiorano
Affiliation:
Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP14884-900, Brazil
M.H.V. de Oliveira
Affiliation:
Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP14884-900, Brazil
L.E.C. dos Santos Correia
Affiliation:
Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP14884-900, Brazil
J.A.II.V. Silva
Affiliation:
Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, SP18618-000, Brazil
*
Author for correspondence: P. Dominguez-Castaño, E-mail: [email protected]

Abstract

This work aimed to evaluate the effects of sire's and dam's biological type, dam's age class at calving and individual heterozygosis, and to estimate variance components for weaning weight adjusted to 210 days (WW210) in beef cattle of different breed groups. Records of 13 687 animals, obtained from 2000 to 2007, were used. Bulls from the biological types Zebu (N), Adapted (A), British (B), Continental (C) and ¼N|¼A|¼B|¼C were mated with purebred zebu (N) and crossbred females (½C|½N and ½B|½N). Dam age at calving was 3–12 years. The influence of several effects on WW210 was tested using the least square method. Variance component analysis was performed using a Bayesian approach. The model included contemporary group, dam's age class at calving, sire's and dam's biological types as systematic effects, animal's age and individual heterozygosis as linear covariates, and direct and maternal additive genetic, maternal permanent environmental and residual effects as random effects. The progeny of bulls from biological type B and the crossbred cows showed higher WW210 means. Cows at 6–7 years old weaned heavier calves. Direct and maternal heritability estimates for WW210 were 0.5 ± 0.04 and 0.1 ± 0.02, respectively. Calves with 100% individual heterozygosis weighed on average 25.98 kg more at weaning compared to progenies from pure breeds. Sire's and dam's biological types influence the WW210 of the crossed progenies. Crossbred cows produce heavier calves compared to biological type N cows. These results and the obtained direct and maternal heritabilities suggest it is possible to choose the lines of sires and dams that could be used to make the crosses to obtain progenies with better performance for WW210.

Type
Animal Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, JF, Tucker, SV and Vann, RC (2001) Effects of Tuli, Senepol, Brahman, Angus, and Polled Hereford sire breeds on birth and weaning traits of offspring. The Professional Animal Scientist 17, 160165.CrossRefGoogle Scholar
Boligon, AA, Pereira, RJ, Ayres, DR and Albuquerque, LGD (2012) Influence of data structure on the estimation of the additive genetic direct and maternal covariance for early growth traits in Nellore cattle. Livestock Science 145, 212218.CrossRefGoogle Scholar
Bourdon, RM (2000) Understanding Animal Breeding, 2nd Edn. Upper Saddle River, New Jersey: Prentice-Hall Inc.Google Scholar
Bovine HapMap Consortium (2009) Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science (New York, N.Y.) 324, 528532.CrossRefGoogle Scholar
Cardoso, LL, Leal, JJB, Nunes, MHG, Teixeira, BBM, Sollero, BP, Silveira, IDB and Cardoso, FF (2018) Sire breed effect on carcass and temperament traits. Semina: Ciência Agráraria 39, 27172726.Google Scholar
Carvalho, VV, Paulino, MF, Detmann, E, Valadares Filho, SC, Lopes, AS, Rennó, LN, Sampaio, CB and Silva, AG (2019) A meta-analysis of the effects of creep-feeding supplementation on performance and nutritional characteristics by beef calves grazing on tropical pastures. Livestock Science 227, 175182.CrossRefGoogle Scholar
Cerdótes, L, Restle, J, Alves Filho, DC, Nörnberg, MDFBL, Nörnberg, JL, Heck, I and Silveira, MFD (2004) Produção e Composição do Leite de Vacas de Quatro Grupos Genéticos Submetidas a Dois Manejos Alimentares no Período de Lactação. Revista Brasileira de Zootecnia 33, 610622.CrossRefGoogle Scholar
Demeke, SFWC, Neser, FWC and Schoeman, SJ (2003) Variance components and genetic parameters for early growth traits in a mixed population of purebred Bos indicus and crossbred cattle. Livestock Production Science 84, 1121.CrossRefGoogle Scholar
Euclides Filho, K, Figueiredo, GR, Da Silva, LO and Alves, RGO (1998) Idade aos 165kg de peso vivo para progênies de Nelore, Fleckvieh, Chianina, Charolês, F1's e retrocruzas. Revista Brasileira de Zootecnia, 27, 899905.Google Scholar
Ferraz, JBS and Felício, PE (2010) Production systems – an example from Brazil. Meat Science 84, 238243.CrossRefGoogle ScholarPubMed
Ferraz, JBS, Eler, JP and Golden, BL (1999) Análise genética do composto Montana Tropical. Revista Brasileira de Reprodução Animal 23, 111113.Google Scholar
Fialho, FRL, Rezende, MPGD, Souza, JCD, Silva, RMD, Oliveira, NMD and Silveira, MVD (2015) Performance in preweaning pure and crossbred calves in the Mato Grosso do Sul Pantanal region, Aquidauana, Mato Grosso do Sul State, Brazil. Acta Scientiarum. Animal Sciences 37, 437442.CrossRefGoogle Scholar
Gelman, A, Carlin, JB, Stern, HS, Dunson, DB, Vehtari, A and Rubin, DB (2013) Bayesian Data Analysis, 3rd Edn. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Geweke, J (1991) Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments. Minneapolis, MN: Federal Reserve Bank of Minneapolis, Research Department.CrossRefGoogle Scholar
Grigoletto, L, Brito, LF, Mattos, EC, Eler, JP, Bussiman, FO, Silva, BDCA, Silva, RPDS, Carvalho, FE, Berton, MP, Baldi, F and Ferraz, JBS (2019) Genome-wide associations and detection of candidate genes for direct and maternal genetic effects influencing growth traits in the Montana Tropical® Composite population. Livestock Science 229, 6476.CrossRefGoogle Scholar
IBGE (2016) Instituto Brasileiro de Geografia e Estatística – IBGE. Estatísticas. Available at https://www.ibge.gov.br/ (Accessed 1 April 2020).Google Scholar
Júnior, JJ, Dias, LT and Albuquerque, LG (2004) Fatores de Correção de Escores Visuais de Conformação, Precocidade e Musculatura, à Desmama, para Idade da Vaca ao Parto, Data Juliana de Nascimento e Idade à Desmama em Bovinos da Raça Nelore. Revista Brasileira de Zootecnia 33, 20442053.CrossRefGoogle Scholar
Kippert, CJ, Rorato, PRN, Lopes, JS, Weber, T and Boligon, AA (2008) Efeitos genéticos aditivos diretos e maternos e heterozigóticos sobre os desempenhos pré e pós-desmama em uma população multirracial Aberdeen Angus x Nelore. Revista Brasileira de Zootecnia 37, 13831391.CrossRefGoogle Scholar
Köppen, W and Geiger, R (1936) Handbuch der Klimatologie. Berlin, Gebr. Borntrager.Google Scholar
Leal, WS, MacNeil, MD, Carvalho, HG, Vaz, RZ and Cardoso, FF (2018) Direct and maternal breed additive and heterosis effects on growth traits of beef cattle raised in southern Brazil. Journal of Animal Science 96, 25362544.CrossRefGoogle ScholarPubMed
Mastrangelo, S, Tolone, M, Ben Jemaa, S, Sottile, G, Gerlando, RD, Cortés, O, Senczuk, G, Portolano, B, Pilla, F and Ciani, E (2020) Refining the genetic structure and relationships of European cattle breeds through meta-analysis of worldwide genomic SNP data, focusing on Italian cattle. Scientific Reports 10, 14522.CrossRefGoogle ScholarPubMed
Mendonça, FS, MacNeil, MD, Leal, WS, Azambuja, RC, Rodrigues, PF and Cardoso, FF (2019) Crossbreeding effects on growth and efficiency in beef cow–calf systems: evaluation of Angus, Caracu, Hereford and Nelore breed direct, maternal and heterosis effects. Translational Animal Science 3, 12861295.CrossRefGoogle ScholarPubMed
Meyer, K, Carrick, MJ and Donnelly, BJP (1994) Genetic parameters for milk production of Australian beef cows and weaning weight of their calves. Journal of Animal Science 72, 11551165.CrossRefGoogle ScholarPubMed
Misztal, I, Tsuruta, S, Strabel, T, Auvray, B, Druet, T and Lee, DH (2002) BLUPF90 and related programs. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France. 33, 743–744.Google Scholar
Montaldo, HH and Kinghorn, BP (2003) Additive and non-additive, direct and maternal genetic effects for growth traits in multibreed population of beef cattle. Archivos de Medicina Veterinaria 35, 17.CrossRefGoogle Scholar
Mourão, GB, Ferraz, JBS, Eler, JP, Balieiro, JCDC, Bueno, RS, Mattos, EC and Figueiredo, LGG (2007) Genetic parameters for growth traits of a Brazilian Bos taurus x Bos indicus beef composite. Genetics and Molecular Research 6, 11901200.Google ScholarPubMed
Sakaguti, ES, Silva, MA, Martins, EN, Lopes, PS, Silva, LOC, Quaas, RL, Regazzi, AJ, Euclydes, RF and Duarte, RG (2002) Trajetória de crescimento e efeito da idade da vaca nos modelos de regressão aleatória de bovinos jovens da raça Tabapuã. Arquivos Brasileiros de Medicina Veterinária e Zootecnia 54, 414423.CrossRefGoogle Scholar
SAS (2011) SAS/STAT guide for personal computers, version 9.3. SAS Institute, Inc, Cary, NC, USA.Google Scholar
Schatz, TJ, Thomas, S and Geesink, G (2014) Comparison of the growth and meat tenderness of Brahman and F1 Senepol× Brahman steers. Animal Production Science 54, 18671870.CrossRefGoogle Scholar
Silva, JAII, Ribeiro, CB, Maiorano, AM, Hadlich, JC, Curi, RA, Oliveira, HN, Lamare, M and Meirelles, PRDL (2015) Influência de fatores ambientais sobre pesos pré-desmama de bovinos cruzados Aberdeen Angus x Nelore. Revista Brasileira de Saúde e Produção Animal 16, 278289.CrossRefGoogle Scholar
Sørensen, MK, Norberg, E, Pedersen, J and Christensen, LG (2008) Invited review: crossbreeding in dairy cattle: a Danish perspective. Journal of Dairy Science 91, 41164128.CrossRefGoogle ScholarPubMed
Teixeira, RA and Albuquerque, MLG (2005) Heteroses materna e individual para ganho de peso pré-desmama em bovinos Nelore × Hereford e Nelore × Angus. Arquivos Brasileiros de Medicina Veterinária e Zootecnia 57, 518523.CrossRefGoogle Scholar
Van Tassell, CP and Van Vleck, LD (1996) Multiple-trait Gibbs sampler for animal models: flexible programs for Bayesian and likelihood-based (co) variance component inference. Journal of Animal Science 74, 25862597.CrossRefGoogle ScholarPubMed
Vergara, OD, Elzo, MA, Ceron-Munõs, MF and Arboleda, EM (2009) Weaning weight and post-weaning gain genetic parameters and genetic trends in a Blanco Orejinegro–Romosinuano–Angus–Zebu multibreed cattle population in Colombia. Livestock Science 124, 156162.CrossRefGoogle Scholar
Williams, JL, Aguilar, I, Rekaya, R and Bertrand, JK (2010) Estimation of breed and heterosis effects for growth and carcass traits in cattle using published crossbreeding studies. Journal of Animal Science 88, 460466.CrossRefGoogle ScholarPubMed