Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T08:56:36.625Z Has data issue: false hasContentIssue false

Fermentation patterns and nutrient contents of forb-containing silages and their effects on microbial fermentation in the artificial rumen system RUSITEC

Published online by Cambridge University Press:  14 November 2007

M. SENG
Affiliation:
Institute of Animal Physiology and Nutrition, Georg-August University of Goettingen, 37077 Goettingen, Germany
S. BONORDEN
Affiliation:
Department of Crop Science, Georg-August University of Goettingen, 37075 Goettingen, Germany
J. NISSEN
Affiliation:
Institute of Animal Physiology and Nutrition, Georg-August University of Goettingen, 37077 Goettingen, Germany
J. ISSELSTEIN
Affiliation:
Department of Crop Science, Georg-August University of Goettingen, 37075 Goettingen, Germany
H. ABEL*
Affiliation:
Institute of Animal Physiology and Nutrition, Georg-August University of Goettingen, 37077 Goettingen, Germany
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Grassland forbs are important constituents of swards under low-input management. The hypothesis tested was that herbage from unfertilized swards consisting of a mixture of perennial ryegrass (Lolium perenne), white clover (Trifolium repens), dandelion (Taraxacum officinale) and ribwort (Plantago lanceolata) (treatment GCF) would exert a significant effect on the composition and quality of silage for rumen microbes compared with herbage from nitrogen-fertilized (50 kg N/ha/cut) pure ryegrass swards (treatment GN) or unfertilized ryegrass white clover swards (treatment GC). GCF had average proportions of clover and forb of 0·21 and 0·58, respectively. The crude protein and fibre fractions declined and non-fibrous carbohydrates (NFC) increased from GN over GC to GCF. Irrespective of cutting date (spring and summer), GN showed extremely high ammonia (NH3) concentrations, whereas GCF resulted in the highest concentrations of lactic acid coinciding with the lowest contents of butyric acid and ethanol. The ratios between the soluble and less soluble N fractions decreased in the order GN>GC>GCF. A similar sequence was observed in RUSITEC for the apparent disappearance rates of crude protein and fibre fractions. The concentration of NH3-N in the fermenter fluid declined in the order GN>GC>GCF. GCF produced less short-chain fatty acids (SCFA) than GN and GC. Microbial nitrogen (MN) flow was not significantly different between treatments but tended to decline in the order GN>GC>GCF, whereas the proportion of MN originating from NH3-N increased inversely. The efficiency of microbial protein synthesis was unaffected by the different silages. It is concluded that forb-rich swards are suitable for the preparation of high quality silages. There is a need for further investigation into postruminal availability and suitable supplementation for such silages in order to fully exploit their potential for improving the efficiency of nitrogen utilization in ruminant nutrition.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boguhn, J., Kluth, H. & Rodehutscord, M. (2006). Effect of total mixed ration composition on fermentation and efficiency of ruminal microbial crude protein synthesis in vitro. Journal of Dairy Science 89, 15801591.CrossRefGoogle ScholarPubMed
Broderick, G. A. & Merchen, N. R. (1992). Markers for quantifying microbial protein synthesis in the rumen. Journal of Dairy Science 75, 26182632.CrossRefGoogle ScholarPubMed
Carro, M. D. & Miller, E. L. (1999). Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC). British Journal of Nutrition 82, 149157.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1977). Design and development of a long-term rumen simulation technique (RUSITEC). British Journal of Nutrition 38, 371384.CrossRefGoogle ScholarPubMed
Demeyer, D. I., Van de Woestyne, M. & Prins, R. (1995). Mikrobiologie der Verdauung. In Nutztierernährung, Potentiale-Verantwortung-Perspektiven (Eds Abel, H., Flachowsky, G., Jeroch, H. & Molnar, S.), pp. 85206. Stuttgart, Germany: Gustav Fischer Verlag.Google Scholar
Demeyer, D. & Fievez, V. (2004). Is the synthesis of rumen bacterial protein limited by the availability of pre-formed amino acids and/or peptides? British Journal of Nutrition 91, 175176.CrossRefGoogle ScholarPubMed
Derrick, R. W., Moseley, G. & Wilman, D. (1993). Intake by sheep and digestibility of chickweed, dandelion, dock, ribwort and spurrey, compared with perennial ryegrass. Journal of Agricultural Science, Cambridge 120, 5161.CrossRefGoogle Scholar
Deutsche Landwirtschafts-Gesellschaft (2006). Grobfutterbewertung. Teil B – DLG-Schlüssel zur Beurteilung der Gärqualität von Grünfuttersilagen auf Basis der chemischen Untersuchung. DLG-Information 2/2006. Frankfurt, Germany: Deutsche Landwirtschafts-Gesellschaft.Google Scholar
France, J. & Dijkstra, J. (2005). Volatile fatty acid production. In Quantitative Aspects of Ruminant Digestion and Metabolism, 2nd ed (Eds Dijkstra, J., Forbes, J. M. & France, J.), pp. 157176. Wallingford, UK: CABI Publishing.CrossRefGoogle Scholar
Givens, D. I. & Rulquin, H. (2004). Utilisation by ruminants of nitrogen compounds in silage-based diets. Animal Feed Science and Technology 114, 118.CrossRefGoogle Scholar
Isselstein, J. & Daniel, P. (1996). The ensilability of grassland forbs. Grassland Science in Europe 1, 451455.Google Scholar
Jaurena, G., Moorby, J. M. & Davies, D. R. (2005). Efficiency of microbial protein synthesis on red clover and ryegrass silages supplemented with barley by rumen simulation technique (RUSITEC). Animal Feed Science and Technology 118, 7991.CrossRefGoogle Scholar
Licitra, G., Hernandez, T. M. & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347358.CrossRefGoogle Scholar
Makkar, H. P. S., Becker, K., Abel, H. & Szegletti, C. (1995). Degradation of condensed tannins by rumen microbes exposed to Quebracho tannins (QT) in the rumen simulation technique (RUSITEC) and effects of QT on fermentative processes in the RUSITEC. Journal of the Science of Food and Agriculture 69, 495500.CrossRefGoogle Scholar
Mbanzamihigo, L., Fievez, V., Da Costa Gomez, C., Piattoni, F., Carlier, L. & Demeyer, D. (2002). Methane emissions from the rumen of sheep fed a mixed grass–clover pasture at two fertilisation rates in early and late season. Canadian Journal of Animal Science 82, 6977.CrossRefGoogle Scholar
McDonald, P., Henderson, A. R. & Heron, S. J. E. (1991). The Biochemistry of Silage, 2nd edn.Marlow, UK: Chalcombe Publications.Google Scholar
McDougall, E. I. (1948). Studies on ruminant saliva. I. The composition and output of sheep's saliva. Biochemical Journal 43, 99109.CrossRefGoogle ScholarPubMed
Meister, E. & Lehmann, J. (1988). Nähr- und Mineralstoffgehalt von Wiesenkräutern aus verschiedenen Höhenlagen in Abhängigkeit vom Nutzungszeitpunkt. Schweizerische Landwirtschaftliche Forschung 27, 127137.Google Scholar
Merry, R. J., Lee, M. R. F., Davies, D. R., Dewhurst, R. J., Moorby, J. M., Scollan, N. D. & Theodorou, M. K. (2006). Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization. Journal of Animal Science 84, 30493060.CrossRefGoogle ScholarPubMed
Naumann, C. & Bassler, R. (1997). Die chemische Untersuchung von Futtermitteln. Methodenbuch Band III. Darmstadt, Germany: VDLUFA Verlag.Google Scholar
Newbold, C. J., Lassalas, B. & Jouany, J. P. (1995). The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Letters in Applied Microbiology 21, 230234.CrossRefGoogle ScholarPubMed
Newbold, C. J. (1999). The need for nitrogen. British Journal of Nutrition 82, 8182.CrossRefGoogle ScholarPubMed
National Research Council, USA (2001). Nutrient Requirements of Dairy Cattle, 7th edn.Washington, DC: National Academy Press.Google Scholar
Nolan, J. V. & Dobos, R. C. (2005). Nitrogen transactions in ruminants. In Quantitative Aspects of Ruminant Digestion and Metabolism, 2nd ed (Eds Dijkstra, J., Forbes, J. M. & France, J.), pp. 177206. Wallingford, UK: CABI Publishing.CrossRefGoogle Scholar
O'Kiely, P. & Muck, R. E. (1998). Grass silage. In Grass for Dairy Cattle (Eds Cherney, J. H. & Cherney, D. J. R.), pp. 223251. Wallingford, UK: CABI Publishing.Google Scholar
Pahlow, G., Rammer, C., Slottner, D. & Tuori, M. (2002). Ensiling of legumes. Landbauforschung Voelkenrode 234, 2731.Google Scholar
Porter, L. J., Hrstich, L. N. & Chan, B. G. (1986). The conversion of procyanidins and prodelphinidins to cyanidin and delphidin. Phytochemistry 25, 223230.CrossRefGoogle Scholar
Russell, J. B., O'Connor, J. D., Fox, D. G., Van Soest, P. J. & Sniffen, C. J. (1992). A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 70, 35513561.CrossRefGoogle Scholar
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition 32, 199208.CrossRefGoogle ScholarPubMed
Schlegel, H. G. (1987). General Microbiology, 6th edn.Cambridge, UK: Cambridge University Press.Google Scholar
Tavendale, M. H., Meagher, L. P., Pacheco, D., Walker, N., Attwood, G. T. & Sivakumaran, S. (2005). Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science Technology 123–124, 403419.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fibre, neutral detergent fibre, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle Scholar
Weissbach, F. (1967). Die Bestimmung der Pufferkapazität der Futterpflanzen und ihre Bedeutung für die Beurteilung der Vergärbarkeit. Tagungsberichte der Deutschen Akademie der Landwirtschaftswissenschaften Berlin 92, 211220.Google Scholar
Weissbach, F. (1998). Untersuchungen über die Beeinflussung des Gärungsverlaufes bei der Bereitung von Silage durch Wiesenkräuter verschiedener Spezies im Aufwuchs extensiv genutzter Wiesen. Landbauforschung Völkenrode Sonderheft 185, 199.Google Scholar
Wilman, D. & Riley, J. A. (1993). Potential nutritive value of a wide range of grassland species. Journal of Agricultural Science, Cambridge 120, 4349.CrossRefGoogle Scholar