Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T06:16:49.908Z Has data issue: false hasContentIssue false

Factors causing alterations of the level of inorganic phosphorus in the blood of zebu cattle

Published online by Cambridge University Press:  27 March 2009

D. H. L. Rollinson
Affiliation:
Animal Health Research Centre, Entebbe, Uganda
R. M. Bredon
Affiliation:
Animal Health Research Centre, Entebbe, Uganda

Extract

Studies have been made on calcium and inorganic phosphorus in pasture grass and their relationship to blood levels in Zebu cattle.

Excitement, adrenaline injections and fatigue were investigated as possible causes of variations in the inorganic-phosphorus levels of the blood of Zebu cattle.

Sudden rainfall appeared to cause alterations in the inorganic phosphorus levels of blood. This hypothesis, when tested on two separate batches of cattle on two occasions, showed that there was a highly significant relationship between water intake and the level of inorganic phosphorus of Zebu cattle blood.

Water starvation caused a steady increase in the level of inorganic phosphorus and when water was available for the cattle to drink the inorganic phosphorus level fell rapidly to a subnormal level before returning to normal. These results are discussed in the light of the available literature.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolph, E. F. (1947). Physiology of Man in the Desert. London: Interscience Publishers Inc.Google Scholar
Allcroft, R. (1952). Personal communication.Google Scholar
Appleman, R. D. & Delouche, J. C. (1958). J. Anim. Sci. 17, 326.CrossRefGoogle Scholar
Bredon, R. M. (1952). Annu. Rep. Dep. Vet. Sci. Uganda: Entebbe, Government Printer.Google Scholar
Bredon, R. M. (1955). Feeding of Livestock in Uganda. Entebbe, Government Printer.Google Scholar
Chenery, E. M. (1954). Annu. Rep. Dep. Agric. Uganda, p. 113. Entebbe, Government Printer.Google Scholar
Clark, E. P. & Collip, J. B. (1925). J. Biol. Chem. 63, 461.CrossRefGoogle Scholar
Courtice, F. C. (1943). J. Physiol. 102, 290.CrossRefGoogle Scholar
Dale, H. E., Burge, C. J. & Brody, J. (1957). Amer. J. Vet. Res. 18, 97.Google Scholar
Fiennes, R. N. T. W. (1952). Nature, Lond., 170, 934.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. J. (1925). J. Biol. Chem. 66, 375.CrossRefGoogle Scholar
French, M. H. (1955). E. Afr. Agric. J. 21, 171.Google Scholar
French, M. H. (1956). Emp. J. Exp. Agric. 24, 128.Google Scholar
Godden, W. (1937). Methods for the chemical analysis of biological material in nutrition investigation. Technical Communication, no. 9. Imp. Bur. Animal Nutrition.Google Scholar
Havard, R. E. & Reay, B. A. (1926). J. Physiol. 61, 35.CrossRefGoogle Scholar
Heller, V. G. & Paul, H. (1934). J. Lab. Clin. Med. 19, 777.Google Scholar
Hix, E. L., Evans, L. E. & Underbjerg, E. K. L. (1953). J. Anim. Sci. 12, 459.CrossRefGoogle Scholar
Knox, J. H., Benner, J. W. & Watkins, W. E. (1941). Bull. N. Mex. Agric. Exp. Sta. no. 282. Abstr. in Nutr. Abstr. Rev. 12, 813.Google Scholar
King, E. J. (1951). Micro-Analysis in Medical Biochemistry, London: J. and A. Churchill.Google Scholar
Leitch, I. & Thomson, J. B. (1944). Nutr. Abstr. Rev. 14, 197.Google Scholar
Malan, A. I., Green, H. H. & du Toit, P. J. (1928). J. Agric. Sci. 18, 376.CrossRefGoogle Scholar
Marriot, M. D. (1947). Brit. Med. J. (i), 245, 285, 328.Google Scholar
MacVicar, R. & Heller, V. G. (1941). J. Biol. Chem. 137, 643.CrossRefGoogle Scholar
Palmer, L. S. & Eckles, C. H. (1927). Proc. Soc. Exp. Biol. N.Y., 24, 307–9.CrossRefGoogle Scholar
Palmer, L. S., Cunningham, W. S. & Eckles, C. H. (1930). J. Dairy Sci. 13, 174.CrossRefGoogle Scholar
Peters, J. P. (1944). Physiol. Rev. 24, 49.CrossRefGoogle Scholar
Reeve, E. B. (1948). Nutr. Abstr. Rev. 17, 811.Google Scholar
Rhoad, A. O. (1942). Proc. 8th Amer. Sci. Congr. 3, 115.Google Scholar
Rollinson, D. H. L., Harker, K. W. & Taylor, J. I. (1955). J. Agric. Sci. 46, 123.CrossRefGoogle Scholar
Sellers, A. F. & Roepke, M. H. (1951). Amer. J. Vet. Res. 12, 183.Google Scholar
Weisberg, H. F. (1953). Water Electrolyte and Acid-base Balance. Baltimore: Williams and Wilkins Co.Google Scholar
Wehmeyer, P. (1954). Acta. path, mikrobiol. scand. 34, 518.CrossRefGoogle Scholar
Wintrobe, P. Maxwell (1946). Clinical Haematology, p. 218. London: Henry Kimpton.Google Scholar