Published online by Cambridge University Press: 27 March 2009
Three pot experiments were performed in unheated glasshouses at the University College of North Wales College Farm, Aber, Gwynedd in 1980–1983. Two experiments tested the effects of sowing date and N supply, the third sowing density and nitrogen supply. Extension growth of main-stem leaves was measured by ruler and expressed in thermal time units to allow comparisons between sowing dates. Rate and duration of leaf extension were determined from linear regressions of leaf length against thermal time.
Increasing N supply increased leaf extension rate but had no significant effects on leaf extension duration. Leaf extension rate increased with leaf position on the main shoot, but decreased slightly in leaves extending at the time of stem elongation. Leaf extension duration also increased with leaf position on the main shoot and was related to mean temperature during the leaf extension phase. Plants sown in September were able to compensate for lower radiation receipts by having a faster rate and longer duration of leaf extension, by producing larger leaves with a greater specific lamina area and by partitioning a greater proportion of extension growth into lamina and less into sheaths. In plants sown in June, the largest leaf occurred at a lower stem node and leaves emerging later showed a strong response to N. It is suggested that this is attributable to earlier onset of internal competition for assimilates. Variation in leaf extension rate was the main factor influencing variation in final leaf area. There was a strong positive relationship between leaf extension rate and leaf N content.
Increasing sowing density increased the area of the first four leaves on the main shoot and decreased that of later leaves, changes mainly associated with changes in leaf extension duration. It is concluded that progress in the modelling of leaf area expansion, light interception and dry matter production requires more information about how sowing date, sowing density and N supply interact to influence crop development and leaf growth.